No CrossRef data available.
Published online by Cambridge University Press: 13 February 2017
We study derived invariance through syzygy complexes. In particular, we prove that syzygy-finite algebras and Igusa--Todorov algebras are invariant under derived equivalences. Consequently, we obtain that both classes of algebras are invariant under tilting equivalences. We also prove that derived equivalences preserve AC-algebras and the validity of the finitistic Auslander conjecture.