Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
de la Bretèche, Régis
2002.
Nombre de points de hauteur bornée sur les surfaces de del Pezzo de degré 5.
Duke Mathematical Journal,
Vol. 113,
Issue. 3,
Bretèche, R. de la
and
Fouvry, é.
2004.
Léclaté du plan projectif en quatre points dont deux conjuguÉs.
Journal für die reine und angewandte Mathematik (Crelles Journal),
Vol. 2004,
Issue. 576,
Bhowmik, Gautami
Essouabri, Driss
and
Lichtin, Ben
2007.
Meromorphic continuation of multivariable Euler products.
Forum Mathematicum,
Vol. 19,
Issue. 6,
Derenthal, U.
and
Loughran, D.
2010.
Singular del Pezzo surfaces that are equivariant compactifications.
Journal of Mathematical Sciences,
Vol. 171,
Issue. 6,
p.
714.
Tolev, Doychin I.
2011.
On the number of pairs of positive integersx1,x2≤Hsuch thatx1x2is ak-th power.
Pacific Journal of Mathematics,
Vol. 249,
Issue. 2,
p.
495.
Frei, Christopher
2013.
Counting rational points over number fields on a singular cubic surface.
Algebra & Number Theory,
Vol. 7,
Issue. 6,
p.
1451.
Derenthal, U.
and
Janda, F.
2013.
Torsors, Étale Homotopy and Applications to Rational Points.
p.
210.
Parker, Edgar
2015.
Entropy Production and Technological Progress, the Yin and Yang of Economics and Finance.
SSRN Electronic Journal,
de la Bretèche, Régis
Destagnol, Kevin
Liu, Jianya
Wu, Jie
and
Zhao, Yongqiang
2019.
On a certain non-split cubic surface.
Science China Mathematics,
Vol. 62,
Issue. 12,
p.
2435.
Liu, Jianya
Wu, Jie
and
Zhao, Yongqiang
2019.
Manin’s Conjecture for a Class of Singular Cubic Hypersurfaces.
International Mathematics Research Notices,
Vol. 2019,
Issue. 7,
p.
2008.
Zhai, Wenguang
2022.
Manin’s conjecture for a class of singular cubic hypersurfaces.
Frontiers of Mathematics,
Vol. 17,
Issue. 6,
p.
1089.
Wen, Tingting
2024.
On the number of integers which form perfect powers in the way of $ x(y_1^2+y_2^2+y_3^2+y_4^2) = z^k $.
AIMS Mathematics,
Vol. 9,
Issue. 4,
p.
8732.
Liu, Kui
and
Niu, Wei
2024.
Counting pairs of polynomials whose product is a cube.
Journal of Number Theory,
Vol. 256,
Issue. ,
p.
170.