Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T21:11:02.095Z Has data issue: false hasContentIssue false

The continuous singular spectrum of the Schrödinger operator

Published online by Cambridge University Press:  24 October 2008

Martin Schechter
Affiliation:
Yeshiva University, New York

Abstract

We give sufficient conditions on the potential V(x) which ensure that the Schrödinger operator (1 · 1) of quantum mechanics has no singular continuous spectrum This generalizes previous results.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Kato, T.Wave operators and similarity for some non-self-adjoint operators. Math. Ann. 162 (1966), 258279.CrossRefGoogle Scholar
(2)Putnam, C. R.Commutation properties of Hilbert space operators (Springer, 1967).CrossRefGoogle Scholar
(3)Lavine, R.Commutators and scattering theory. Indiana Univ. Math. J. 21 (1972), 643656.CrossRefGoogle Scholar
(4)Agmon, S.Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa 2 (1975) 151218.Google Scholar
(5)Howland, J. S.Banach space techniques in the perturbation theory of self-adjoint operators. J. Math. Anal. Appl. 20 (1967), 2247.CrossRefGoogle Scholar
(6)Ikebe, T.Eigenfunction expansions associated with the Schrödinger operator. Arch. Rat. Mech. Anal. 5 (1960), 134.CrossRefGoogle Scholar
(7)Saito, Y.The principle of limiting absorption. Publ. Res. Inst. Math. Sci. 7 (1972), 581619.CrossRefGoogle Scholar
(8)Kuroda, S. T.Scattering theory for differential operators: I, II, J. Math. Soc. Japan 25 (1973), 75104, 222–234.Google Scholar
(9)Shenk, N. and Thoe, D.Eigenfunction expansions and scattering theory. J. Math. Anal. Appl. 36 (1971) 313351.CrossRefGoogle Scholar
(10)Alsholm, P. and Schmidt, G.Spectral and scattering theory for Schrödinger operators. Arch. Rat. Mech. Anal. 40 (1971), 281311.CrossRefGoogle Scholar
(11)Simon, B.Phase space analysis of simple scattering systems. Duke Math. J.Google Scholar
(12)Schechter, M.Discreteness of the singular spectrum. Math. Proc. Cambridge Philos. Soc. 80 (1976), 121133.CrossRefGoogle Scholar
(13)Rejto, P.Some potential perturbations of the Laplacian. Helv. Phys. Acta 44 (1971) 708736.Google Scholar
(14)Schechter, M.Another look at scattering theory. International Theoret. Phys. 17 (1978), 3341.CrossRefGoogle Scholar
(15)Schechter, M. Two space scattering theory using the subspace of continuity. (To appear).Google Scholar
(16)Schechter, M.Spectra of partial differential operators (North Holland, 1971).Google Scholar
(17)Schechter, M.Scattering theory for second order elliptic operators. Ann. Mat. Pura Sppl. 105 (1975), 313331.CrossRefGoogle Scholar
(18)Schechter, M.Scattering theory for elliptic operators. Comm. Math. Helv. 49 (1974) 84113.CrossRefGoogle Scholar