Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T01:29:19.307Z Has data issue: false hasContentIssue false

Completeness and intertwined completeness of locally convex spaces

Published online by Cambridge University Press:  24 October 2008

Steven F. Bellenot
Affiliation:
Florida State University, Tallahassee, Florida 32306
Edward G. Ostling
Affiliation:
Hofstra University, Hempstead, New York 11550

Abstract

Two collections of locally convex space topologies are shown to have the intertwined completeness property. This is done by relating their completions with sets of sequentially continuous functionals on the dual.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Bellenot, S. F. Ph.D. Thesis (Claremont Graduate School, 1974).Google Scholar
(2)Bellenot, S. F.Prevarieties and intertwined completeness of locally convex spaces. Math. Ann. 217 (1975), 5967.CrossRefGoogle Scholar
(3)Bellenot, S. F.On nonstandard hulls of convex spaces. Canad. J. Math. 28 (1976), 141147.CrossRefGoogle Scholar
(4)Buchwalter, H.Espaces localement convexes semi-faibles. C. R. Acad. Sci. Paris (Sér. A) 278 (1974), 257259.Google Scholar
(5)Buchwalter, H.Espaces localement convexes semi-faibles. IIéme Coll. Anal. Fonct. (1973, Bordeaux), 1328.Google Scholar
(6)Day, M. M.Normed Linear Spaces, 3rd ed. (Springer-Verlag 1973).CrossRefGoogle Scholar
(7)Diestel, J., Morris, S. A. and Saxon, S. A.Varieties of linear topological spaces. Trans. Amer. Math. Soc. 172 (1972), 207230.CrossRefGoogle Scholar
(8)Gillman, L. and Henriksen, M.Concerning rings of continuous functions. Trans. Amer. Math. Soc. 77 (1954), 340362.CrossRefGoogle Scholar
(9)Henson, C. W. and Moore, L. C. Jr.Invariance of nonstandard hulls of locally convex spaces. Duke Math. J. 40 (1973), 193206.CrossRefGoogle Scholar
(10)Howard, J. and Ostling, E. G. The topology of uniform convergence on weak star null sequences (to appear).Google Scholar
(11)Johnson, W. B. and Zippin, M.Subspaces and quotient spaces of (∑Gn)D and . Israel J. Math. 17 (1974), 5055.CrossRefGoogle Scholar
(12)Kalton, N. J.Some forms of the closed graph theorem. Proc. Cambridge Philos. Soc. 70 (1971), 401408.CrossRefGoogle Scholar
(13)Köthe, G.Topological Vector Spaces I (Springer-Verlag, 1969).Google Scholar
(14)Nachbin, L.Topological vector spaces of continuous functions. Proc. Nat. Acad. Sci. USA 40 (1954), 471474.CrossRefGoogle ScholarPubMed
(15)Ostling, E. G. and Wilansky, A.Locally convex topologies and the convex compactness property. Proc. Cambridge Philos. Soc. 75 (1974), 4550.CrossRefGoogle Scholar
(16)Robertson, A. P. and Robertson, W.Topological Vector Spaces, 2nd ed. (Cambridge University Press, 1973).Google Scholar
(17)Saxon, S. A.Nuclear and product spaces, Baire-like spaces and the strongest locally convex topology. Math. Ann. 182 (1972), 87106.CrossRefGoogle Scholar
(18)Schaeffer, H. H.Topological Vector Spaces (Springer-Verlag, 1971).CrossRefGoogle Scholar
(19)Shirota, T.On locally convex vector spaces of continuous functions. Proc. Japan Acad. Sci. 30 (1954), 294298.Google Scholar
(20)Ulam, S.Zur Maßtheorie in der allgemeinen Mengenlehre. Fund. Math. 16 (1930), 140150.CrossRefGoogle Scholar
(21)Wilansky, A.Topics in Functional Analysis (Berlin, 1967).CrossRefGoogle Scholar