Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T01:16:14.959Z Has data issue: false hasContentIssue false

Commensurability classes of arithmetic Fuchsian surface groups of genus 2

Published online by Cambridge University Press:  28 September 2009

C. MACLACHLAN
Affiliation:
Department of Mathematical Sciences, Aberdeen University, Aberdeen AB24 3UE. e-mail: [email protected]
G. ROSENBERGER
Affiliation:
Fakultät für Mathematik, Technische Universität Dortmund, 44221 Dortmund, Germany. e-mail: [email protected]

Abstract

Here we determine the arithmetic data i.e. the totally real number field and the set of ramified places of the defining quaternion algebra, of all those commensurability classes of arithmetic Fuchsian groups which contain a surface group of genus 2, i.e. a group of signature (2;– –).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ackermann, P.A description of the arithmetic Fuchsian groups with signature (2;– –). Contemp. Math. 421 (2006), 114.CrossRefGoogle Scholar
[2]Ackermann, P., Näätänen, M. and Rosenberger, G.The arithmetic Fuchsian groups of signature (0; 2, 2, 2, q). Res. Exp. Math. 27 (2003), 19.Google Scholar
[3]Baer, C. Klassifikation arithmetischer Fuchsscher Gruppen der Signatur (0; e 1, e 2, e 3, e 4). Dissertation (University Dortmund, 2001).Google Scholar
[4]Borel, A.Commensurability classes and volumes of hyperbolic three-manifolds. Ann. Scuola Norm. Sup. Pisa 8 (1981), 133.Google Scholar
[5]Chinburg, T. and Friedman, E.An embedding theorem for quaternion algebras. J. London Math. Soc. 60 (1999), 3344.CrossRefGoogle Scholar
[6]Chinburg, T. and Friedman, E.The finite subgroups of maximal arithmetic subgroups of PGL(2, ). Ann. Inst. Fourier 50 (2000), 17651798.CrossRefGoogle Scholar
[7]Hilbert, D.Über die Theorie des relativquadratischen Zahlkörpers. Math. Ann. 51 (1899), 1127.CrossRefGoogle Scholar
[8]Johansson, S.Genera of arithmetic Fuchsian groups. Acta Arith. 86 (1998), 171191.CrossRefGoogle Scholar
[9]Macasieb, M.Derived arithmetic Fuchsian groups of genus two. Experiment. Math. 17 (1) (2008), 347369.CrossRefGoogle Scholar
[10]Maclachlan, C.Torsion in arithmetic Fuchsian groups. J. London Math. Soc. 73 (2006), 1430.CrossRefGoogle Scholar
[11]Maclachlan, C.Torsion in maximal arithmetic Fuchsian groups. Contemp. Math. 421 (2006), 213225.CrossRefGoogle Scholar
[12]Maclachlan, C. and Reid, A. W.The arithmetic of hyperbolic 3-manifolds. Graduate Texts in Maths Vol 219 (Springer, 2003.)Google Scholar
[13]Maclachlan, C. and Rosenberger, G.Two-generator arithmetic Fuchsian groups II. Math. Proc. Camb. Phil. Soc. 111 (1992), 724.CrossRefGoogle Scholar
[14]Maclachlan, C. and Rosenberger, G.Commensurability classes of two generator Fuchsian groups. London Math. Soc. Lecture Note Series Vol. 173 (Cambridge University Press, Cambridge, 1992), 171189.Google Scholar
[15]Odlyzko, A.Some analytic estimates of class numbers and discriminants. Invent. Math. 29 (3) (1975), 275286.CrossRefGoogle Scholar
[17]Abu Osman, M.T. and Rosenberger, G. Embedding property of surface groups. Bull. Malaysian Math. Soc. II Ser 3. (1980), 21–27.Google Scholar
[18]Cohen, H. et al. (Available by ftp from megrez.math.u-bordeaux.fr).Google Scholar
[19]Cohen, H. et al. (Freeware available by ftp from [email protected]/pari.)Google Scholar
[20]Silhol, R.On some one parameter families of genus 2 algebraic curves and half-twists. Comment. Math. Helv. 82 (2007), 413449.CrossRefGoogle Scholar
[21]Lelievre, S. and Silhol, R. Multi-geodesic tesselations, fractional Dehn twists and uniformization of algebraic curves, to appear.Google Scholar
[22]Singerman, D.Finitely generated maximal Fuchsian groups. J. London Math. Soc. 6 (1972), 2938.CrossRefGoogle Scholar
[23]Takeuchi, K.Arithmetic triangle groups. J. Math. Soc. Japan 29 (1977), 91106.CrossRefGoogle Scholar
[24]Takeuchi, K.Commensurability classes of arithmetic triangle groups. J. Fac. Sci. Univ. Tokyo 24 (1977), 201222.Google Scholar
[25]Takeuchi, K.Arithmetic Fuchsian groups of signature (1; e). J. Math. Soc. Japan 35 (1983), 381407.Google Scholar
[26]Voight, J.Shimura curves of genus at most two. Math. Comp. 78 (2009), 11551172.Google Scholar