No CrossRef data available.
Published online by Cambridge University Press: 04 November 2014
In [15], Shiu proved that if a and q are arbitrary coprime integers, then there exist arbitrarily long strings of consecutive primes which are all congruent to a modulo q. We generalize Shiu's theorem to imaginary quadratic fields, where we prove the existence of “bubbles” containing arbitrarily many primes which are all, up to units, congruent to a modulo q.