Published online by Cambridge University Press: 24 October 2008
Let A be a (commutative, Noetherian) local ring. The big Cohen-Macaulay conjecture asserts that if a1,…,an is a system of parameters for A there exists an A-module M such that a1,…,an is an M-sequence. Then we say that M is a big Cohen-Macaulay module with respect to a1,…,an. This conjecture implies some important conjectures in commutative algebra and has been established affirmatively by M. Hochster for any ring containing a field as a subring (see [9] for further information).