Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T01:02:38.367Z Has data issue: false hasContentIssue false

Arcbodies

Published online by Cambridge University Press:  24 October 2008

Maria Teresa Lozano
Affiliation:
Facultad de Ciencias, Universidad de Zaragoza, Spain

Extract

A Haken manifold is a compact, orientable, irreducible 3-manifold which contains a properly embedded 2-sided, incompressible surface of positive genus. These manifolds are important in connection with the work of Haken, Waldhausen and the more recent work of Thurston (8). Thus it is interesting to investigate criteria for testing incompressible surfaces on 3-manifolds.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Bleiler, S. A.Knots prime on many strings. (Preprint, the University of Texas at Austin, 1982.)Google Scholar
(2)Gonzlez-Acua, F.Notas sobre enlaces y 3-variedades (Publications, Secci de Matemtiques, Universitat Autnoma de Barcelona, to appear).Google Scholar
(3)Gordon, C. McA. and Litherland, R. A. Incompressible surfaces in branched coverings. In Symposium on the Smith Conjecture (ed. Bass, , Birman, and Morgan, ), Columbia University (1979). (To appear.)Google Scholar
(4)Hurwitz, A.ber Riemann'sche Flchen mit gegebenen verzweigungspunkten. Math. Ann. 39 (1891), 160.CrossRefGoogle Scholar
(5)Lickorish, W. B. R.Prime knots and tangles. Trans. Amer. Math. Soc 267 (1981), 321332.CrossRefGoogle Scholar
(6)Meeks, W. H. III and Yau, S. T.Topology of three-dimensional manifolds and the embedding problems in minimal surface theory. Ann. of Math. 112 (1980), 441485.CrossRefGoogle Scholar
(7)Przytycki, J. H.Nonorientable, incompressible surfaces in punctured-torus bundles over S 1. Pacific J. Math. (in the Press).Google Scholar
(8)Thurston, W.The geometry and topology of 3-manifolds (Princeton University Press).Google Scholar