No CrossRef data available.
Published online by Cambridge University Press: 24 October 2008
A set A ⊂ ωω is called compactly if, for every compact K ⊂ ωω, A ∩ K is . Consider the proposition that every compactly set is . (AD implies that it is true, ZFC + CH implies that it is false.) We are concerned here with whether this is consistent with ZFC, particularly when n = 1. In the case of sets (that is, analytic sets), this consistency question is due to Fremlin (see [7], page 483, problem 18). Kunen and Miller [3] have proved the following two theorems.