Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-24T17:15:09.752Z Has data issue: false hasContentIssue false

An extension of the law of the iterated logarithm

Published online by Cambridge University Press:  24 October 2008

J. W. S. Cassels
Affiliation:
The UniversityManchester

Extract

1. Let x1, x2, …, xn, … be a set of independent variables each with a uniform probability distribution in 0 ≤ x ≤ 1. If 0 ≤ α < β ≤ 1 we denote by FN (α, β) the number of x1, …, xN which satisfy α < xβ,

and put RN(α, β) = FN(α, β) − N(β − α).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1951

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Cassels, J. W. S.Some metrical theorems of Diophantine approximation III, IV. Proc. Cambridge Phil. Soc. 46 (1950), 219–25 and Proc. K. Ned. Akad. Amsterdam, 53 (1950), 176–87 (= Indagationes Math. 12 (1950), 14–25).CrossRefGoogle Scholar
(2)Khintchine, A. Ya.Über einen Satz der Wahrscheinlichkeitsrechnung. Fund. Math. 6 (1924), 920.CrossRefGoogle Scholar
(3)Khintchine, A. Ya.Asymptotische Gesetze der Wahrscheinlichkeitsrechnung. Ergebn. Math, iv, 2 (1933), 65, Hilfssatz 3.Google Scholar