Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T01:57:58.515Z Has data issue: false hasContentIssue false

An application of p-factorization methods to symmetric graphs

Published online by Cambridge University Press:  24 October 2008

Richard Weiss
Affiliation:
Freie Universität Berlin, W. Germany

Extract

Let Γ be an undirected graph and G a subgroup of aut (Γ) acting transitively on the vertex set V(Γ) of Γ. Let x be an arbitrary vertex of Γ. We denote by T(x) the set of vertices adjacent to x and by G(x)Γ(x) the permutation group induced by the stabilizer G(x) of x in G on Γ(x); G(x)Γ(x) is called the subconstituent of G (with respect to Γ). Let G1(x) = {aG(x)|aG(y) for each y ∈ Γ(x)}. For each y ∈ Γ(x), let G(x, y) = G(x) ∩ G(y) and G1(x, y) = G1(x) ∩ G1(y). An s-path is an (s+ l)-tuple (x0, x1, …, xs) of vertices such that xi−1 ∈ Γ(xi) if 1 ≤ is and xi−2xi if 2 ≤ is. Γ is called (G, s)-transitive if G acts transitively on the set of all s-paths but intransitively on the set of all (S+1)-paths in Γ.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Bürker, M. and Knapp, W.Zur Vermutung von Sims über primitive Permutations-gruppen II. Arch. Math. 27 (1976), 352359.CrossRefGoogle Scholar
(2)Dempwolff, U.A factorization lemma and an application. I and II. Arch. Math. 27 (1976), 1821, 476–479.CrossRefGoogle Scholar
(3)Gardiner, A.Arc transitivity in graphs. Quart. J. Math. Oxford Ser. (2) 24 (1973), 399407.CrossRefGoogle Scholar
(4)Glauberman, G.Weakly closed elements of Sylow subgroups. Math. Z. 107 (1968), 120.CrossRefGoogle Scholar
(5)Glauberman, G.A characteristic subgroup of a p-stable group. Canad. J. Math. 20 (1968), 11011135.CrossRefGoogle Scholar
(6)Glauberman, G.Failure of factorization in p-solvable groups. Quart. J. Math. Oxford Ser. (2) 24 (1973), 7177.CrossRefGoogle Scholar
(7)Gorenstein, D.Finite Groups (New York, Harper & Row, 1968).Google Scholar
(8)Huppert, B.Endliche Gruppen, vol. I (Berlin-Heidelberg-New York, Springer-Verlag, 1967).CrossRefGoogle Scholar
(9)McLaughlin, J.Some groups generated by transvections. Arch. Math. 18 (1967), 363368.CrossRefGoogle Scholar
(10)McLaughlin, J.Some subgroups of SLn(F 2). Illinois J. Math. 13 (1969), 108115.Google Scholar
(11)Quirin, W. L.Primitive permutation groups with small orbitals. Math. Z. 122 (1971), 267274.CrossRefGoogle Scholar
(12)Thompson, J. G.Factorization of p-solvable groups. Pacific J. Math. 16 (1966), 371372.CrossRefGoogle Scholar
(13)Tutte, W. T.A family of cubical graphs. Proc. Cambridge Philos. Soc. 43 (1947), 459474.CrossRefGoogle Scholar
(14)Weiss, R.Über symmetrische Graphen und die projektiven Gruppen. Arch. Math. 28 (1977), 110112.CrossRefGoogle Scholar
(15)Weiss, R.Symmetrische Graphen mit auflösbaren Stabilisatoren. J. Algebra 53 (1978), 412415.CrossRefGoogle Scholar
(16)Zsigmondy, K.Zur Theorie der Potenzreste. Monatsh. Math. u. Phys. 3 (1892), 265284.CrossRefGoogle Scholar