We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
1. Suppose that f is a function analytic on a region G in complex n-space Cn, and that f(m)(w(m)) = 0 for each m = (m1, m2,…, mn), mi = 0, 1, 2,…, where
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
REFERENCES
(1)
(1)Ålander, M. Sur le deplacement des zéros des fonctions entières par leur derivation, dissertation, Uppsala, 1914.Google Scholar
(2)
(2)Arsove, M. G.Paley-Wiener theorem in linear metric spaces. Pacific J. Math.10 (1960), 365–379.CrossRefGoogle Scholar
(3)
(3)Boas, R. P.Expansions of analytic functions. Trans. Amer. Math. Soc.48 (1940), 467–487.CrossRefGoogle Scholar
(4)
(4)Ebdös, P. and Rényi, A.On the number of zeros of successive derivatives of analytic functions. Acta Math. Acad. Sci. Hungar. 7 (1956), 125–144.Google Scholar
(5)
(5)Iyer, V. GanapathyOn singular functions. J. Indian Math. Soc.8 (1944), 94–108.Google Scholar
(6)
(6)Gontcharoff, W.Recherches sur les derivées successives des fonctions analytiques. Ann. Sci. École Norm. Sup.47 (1930), 1–78.CrossRefGoogle Scholar
(7)
(7)Kakeya, S.An extension of power series. Proc. Tokyo Phys. Math. Soc.14 (1932), 125–138.Google Scholar
(8)
(8)Pólya, G.The zeros of the derivatives of a function. Bull. Amer. Math. Soc.49 (1943), 178–191.CrossRefGoogle Scholar
(9)
(9)Takenaka, S.On the expansion of analytic functions in series of analytic functions and its application to the study of the distribution of zero points of the derivatives of analytic functions. Proc. Tokyo Phys. Math. Soc.ser. 3, 13 (1931), 111–132.Google Scholar
(10)
(10)Takenaka, S.On the expansion of integral transcendental functions in generalized Taylor7apos;s series. Proc. Tokyo Phys. Math. Soc.ser. 3, 14 (1932), 529–542.Google Scholar
(11)
(11)Wilf, H. S.Whittaker's constant for lacunary entire functions. Proc. Amer. Math. Soc.14 (1963), 238–242.Google Scholar
(12)
(12)Džrbašjan, M. M.On the integral representation and expansion in generalized Taylor series of entire functions of several complex variables. Amer. Math. Soc. Translations, 2nd series, 32 (1963), 289–309.CrossRefGoogle Scholar
(13)
(13)Nguyen Thanh, Van.Sur l'interpolation d'Abel-Gontcharoff des fonctions entierès de n variables complexes. C.R. Acad. Sci., Paris263 (1966), 782–784.Google Scholar
(14)
(14)Perami, Helene. Sur le problem d'Abel–Gontcharoff pour les fonctions entieres de deux variables. C.R. Acad. Sci.Paris263 (1966), 566–569.Google Scholar