No CrossRef data available.
Article contents
Thue equations that simultaneously fail the Hasse principle
Part of:
Diophantine equations
Published online by Cambridge University Press: 17 May 2021
Abstract
We refine a previous construction by Akhtari and Bhargava so that, for every positive integer m, we obtain a positive proportion of Thue equations F(x, y) = h that fail the integral Hasse principle simultaneously for every positive integer h less than m. The binary forms F have fixed degree ≥ 3 and are ordered by the absolute value of the maximum of the coefficients.
MSC classification
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 172 , Issue 3 , May 2022 , pp. 617 - 626
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press on behalf of Cambridge Philosophical Society
Footnotes
†
Supported by SNF grant 173976.
References
Akhtari, S.. A positive proportion of locally soluble quartic Thue equations is globally insoluble. arXiv:2002.00548 [math.NT] submitted (2020).CrossRefGoogle Scholar
Akhtari, S. and Bhargava, M.. A positive proportion of Thue equations fail the integral Hasse principle. Amer. J. Math. 141, no. 2 (2019), 283–307.CrossRefGoogle Scholar
Bengoechea, P.. Thue inequalities with few coefficients. International Mathematics Research Notices, IMRN (2020). https://doi.org/10.1093/imrn/rnaa136.CrossRefGoogle Scholar
Evertse, J. H. and Györy, K.. Thue inequalities with a small number of solutions. In: The mathematical heritage of C.F. Gauss (World Scientific Publ. Co., Singapore, 1991), 204–224.CrossRefGoogle Scholar
Györy, K.. Thue inequalities with a small number of primitive solutions. Period. Math. Hungar. 42 (2001), no. 1-2, 199–209.CrossRefGoogle Scholar
Mahler, K.. Zur Approximation algebraischer Zahlen III. Über die mittlere Anzahl der Darstellungen grosser Zahlen durch binäre Formen. Acta. Math. 62 (1933), 91–166.CrossRefGoogle Scholar
Mueller, J. and Schmidt, W. M.. Thue’s equation and a conjecture of Siegel. Acta Math. 160 (1988), no. 3-4, 207–247.CrossRefGoogle Scholar
Schmidt, W. M.. Thue equations with few coefficients. Trans. Amer. Math. Soc. 303 (1987), 241–255.CrossRefGoogle Scholar
Thunder, J. L.. On Thue inequalities and a conjecture of Schmidt. J. Number Theory 52 (1995), 319–328.CrossRefGoogle Scholar