Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Lundborg, Bengt
and
Fröman, Per Olof
1988.
Improvement of the generalized quantal Bohr–Sommerfeld quantization condition.
Mathematical Proceedings of the Cambridge Philosophical Society,
Vol. 104,
Issue. 3,
p.
581.
Fröman, Nanny
Fröman, Per Olof
and
Lundborg, Bengt
1988.
Symmetry relations for connection matrices in the phase-integral method.
Mathematical Proceedings of the Cambridge Philosophical Society,
Vol. 104,
Issue. 1,
p.
181.
Fröman, Nanny
and
Fröman, Per Olof
1991.
New two-turning-point phase-integral formula for the residue of theSmatrix at a Regge pole.
Physical Review A,
Vol. 43,
Issue. 7,
p.
3563.
Fröman, Nanny
Fröman, Per Olof
Andersson, Nils
and
Hökback, Anders
1992.
Black-hole normal modes: Phase-integral treatment.
Physical Review D,
Vol. 45,
Issue. 8,
p.
2609.
Andersson, Nils
and
Linnæus, Staffan
1992.
Quasinormal modes of a Schwarzschild black hole: Improved phase-integral treatment.
Physical Review D,
Vol. 46,
Issue. 10,
p.
4179.
Dzieciol, Aleksander
1992.
The Stokes constants associated with the differential equation d2ψ/dz2−4A2z
n−2(z
n+c)ψ=0.
Journal of Mathematical Physics,
Vol. 33,
Issue. 3,
p.
840.
Amaha, A.
Dzieciol, A.
Fröman, N.
Fröman, P. O.
and
Thylwe, K.-E.
1992.
Arbitrary-order three-turning-point phase-integral formula for theSmatrix in Regge-pole theory.
Physical Review A,
Vol. 45,
Issue. 3,
p.
1596.
Skorupski, Andrzej A.
1993.
Wave propagation in complex systems of cutoffs and resonances.
Journal of Mathematical Physics,
Vol. 34,
Issue. 7,
p.
2990.
Araujo, M E
Nicholson, D
and
Schutz, B F
1993.
On the Bohr-Sommerfeld formula for black hole normal modes.
Classical and Quantum Gravity,
Vol. 10,
Issue. 6,
p.
1127.
Andersson, N
Araujo, M E
and
Schutz, B F
1993.
The phase-integral method and black hole normal modes.
Classical and Quantum Gravity,
Vol. 10,
Issue. 4,
p.
735.
Andersson, Nils
1994.
Complex angular momenta and the black-hole glory.
Classical and Quantum Gravity,
Vol. 11,
Issue. 12,
p.
3003.
Andersson, Nils
1995.
Scattering of massless scalar waves by a Schwarzschild black hole: A phase-integral study.
Physical Review D,
Vol. 52,
Issue. 4,
p.
1808.
Dzieciol, Aleksander
Fröman, Per Olof
and
Fröman, Nanny
1996.
Phase-Integral Method.
Vol. 40,
Issue. ,
p.
85.
Fröman, Nanny
Fröman, Per Olof
and
Lundborg, Bengt
1996.
Phase-Integral Method.
Vol. 40,
Issue. ,
p.
109.
Dzieciol, Aleksander
Yngve, Staffan
and
Fröman, Per Olof
1999.
Phase-integral formulas for Coulomb wave functions with complex values of the variable and the parameters.
Journal of Mathematical Physics,
Vol. 40,
Issue. 12,
p.
6167.
Fröman, Per Olof
2000.
Phase-integral formulas for quantal matrix elements.
Journal of Mathematical Physics,
Vol. 41,
Issue. 12,
p.
7952.
Athavan, N.
Fröman, P. O.
Fröman, N.
and
Lakshmanan, M.
2001.
Quantal two-center Coulomb problem treated by means of the phase-integral method. I. General theory.
Journal of Mathematical Physics,
Vol. 42,
Issue. 11,
p.
5051.
Glampedakis, Kostas
and
Andersson, Nils
2001.
Scattering of scalar waves by rotating black holes.
Classical and Quantum Gravity,
Vol. 18,
Issue. 10,
p.
1939.
Fröman, Nanny
and
Fröman, Per Olof
2002.
Physical Problems Solved by the Phase-Integral Method.
Linnæus, Staffan
2005.
Stokes constants for a singular wave equation.
Journal of Mathematical Physics,
Vol. 46,
Issue. 5,