Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T12:55:28.676Z Has data issue: false hasContentIssue false

Some theorems on fractional integrals

Published online by Cambridge University Press:  24 October 2008

Extract

1. Let φ(z) be regular in │z│ < 1, let

and for any real α let

where (in)−α = n−α exp(— ½απi). The function φα is an adaptation to power series of the Weyl fractional integral of order a of α function of a real variable.† It exists and is regular in │z│ < 1 for all α. Let also

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1959

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)FejÉR, L. and Riesz, F.Über einige funktionentheoretische Ungleichungen. Math. Zeit. 11 (1921), 305–14.CrossRefGoogle Scholar
(2)Flett, T. M.On an extension of absolute summability and some theorems of Littlewood and Paley. Proc. Lond. Math. Soc. (3), 7 (1957), 113–41.CrossRefGoogle Scholar
(3)Flett, T. M.On the absolute summability of a Fourier series and its conjugate series. Proc. Lond. Math. Soc. (3), 8 (1958), 258311.CrossRefGoogle Scholar
(4)Flett, T. M.Some more theorems concerning the absolute summability of Fourier series and power series. Proc. Lond. Math. Soc. (3), 8 (1958), 357–87.CrossRefGoogle Scholar
(5)Flett, T. M. Some generalizations of Tauber's second theorem. Quart. J. Math. (Oxford) (to appear).Google Scholar
(6)Flett, T. M. Some remarks on strong summability. Quart. J. Math. (Oxford) (to appear).Google Scholar
(7)Flett, T. M. On the summability of a power series on its circle of convergence. Quart. J. Math. (Oxford) (to appear).Google Scholar
(8)Hardy, G. H. and Littlewood, J. E.A maximal theorem with function-theoretic applications. Acta Math. 54 (1930), 81116.CrossRefGoogle Scholar
(9)Hardy, G. H. and Littlewood, J. E.Some properties of fractional integrals. II. Math. Zeit. 34 (1931), 403–39.CrossRefGoogle Scholar
(10)Hirschman, I. I.Fractional integration. Amer. J. Math. 75 (1953), 531–46.CrossRefGoogle Scholar
(11)Littlewood, J. E.Lectures on the theory of functions (Oxford, 1944).Google Scholar
(12)Littlewood, J. E. and Paley, R. E. A. C.Theorems on Fourier series and power series. II. Proc. Lond. Math. Soc. (2), 42 (1936), 5289.Google Scholar
(13)Marcinkiewicz, J. and Zygmund, A.A theorem of Lusin. Duke Math. J. 4 (1938), 473–85.CrossRefGoogle Scholar
(14)Plessner, A.Üiber Konvergenz von trigonometrischen Reihen. J. reine angew. Math. 155 (1926), 1525.CrossRefGoogle Scholar
(15)Spencer, D. C.A function-theoretic identity. Amer. J. Math. 65 (1943), 147–60.CrossRefGoogle Scholar
(16)Zygmund, A.Trigonometrical series (Warsaw, 1935).Google Scholar