Some generalizations of the Borsuk–Ulam theorem and applications to realizing homotopy classes by embedded spheres
Published online by Cambridge University Press: 24 October 2008
Extract
In this paper, some theorems of the Borsuk-Ulam type (1) are given. One of these can be applied to show that certain homotopy classes in manifolds cannot be realized by embedded spheres. The n-dimensional sphere Sn is the subset of the euclidean space
Rn+l consisting of all points (x1, …,xn+1) satisfying . Let be a piecewise linear (PL) involution on Sn without fixed points.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 74 , Issue 2 , September 1973 , pp. 251 - 256
- Copyright
- Copyright © Cambridge Philosophical Society 1973
References
REFERENCES
- 7
- Cited by