Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T19:14:24.919Z Has data issue: false hasContentIssue false

The sheaf of relative differentials of a fibred surface

Published online by Cambridge University Press:  24 October 2008

Fernando Serrano
Affiliation:
Departament d'Àlgebra i Geometria, Facultat de Matemàtiques, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain

Abstract

Let Φ: SC denote a fibration from a smooth projective surface onto a smooth curve, with fibres of genus ≥2. The double dual of the sheaf of relative differentials has been studied by F. Serrano [14]. There, it was proved that dim grows asymptotically as the square of n in case Φ is not isotrivial (i.e. fibres vary in modulus), and the converse holds true in most cases, in a way that can be made precise. In the non-isotrivial case, the present paper provides further information about by analysing the linear systems for large n. If P denotes the positive part of in its Zariski decomposition, then it is shown that |rP| is eventually base-point free for some r > 0. Furthermore, Proj is a normal projective surface, fibred over C, birational to S, and with only rational singularities.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Arakelov, S.. Families of algebraic curves with fixed degeneracy. In Russian: Izv. Akad. Nauk. SSSR Ser. Mat. 35 (1971), 12691293.Google Scholar
Arakelov, S.. Families of algebraic curves with fixed degeneracy. In English: In English: Math. USSR-Izv. 5 (1971), 12771302.CrossRefGoogle Scholar
[2]Barth, W., Peters, C. and Van de Ven, A.. Compact Complex Surfaces. Ergeb. Math. Grenzgeb (3) 4 (Springer-Verlag, 1984).CrossRefGoogle Scholar
[3]Beauville, A.. L'inégalité p 0 ≥ 2q−4 pour les surfaces de type general. Bull. Soc.Math. France 110 (1982), 343346.Google Scholar
[4]Benveniste, X.. On the fixed part of certain linear systems on surfaces. Compositio Math. 51 (1984), 237242.Google Scholar
[5]Fujita, T.. On the Zariski problem. Proc. Japan Acad., Ser. A. Math. Sci. 55 (1979), 106110.Google Scholar
[6]Fujita, T.. Semipositive line bundles. J. Fac. Sci. Univ. Tokyo 30 (1983), 353378.Google Scholar
[7]Kunz, E.. Kähler Differentials. Viehweg Adv. Lect. Math. (Friedr. Vieweg & Sohn, 1986).CrossRefGoogle Scholar
[8]Miyanishi, M. and Tsunoda, S.. Open algebraic surfaces with Kodaira dimension −∞. Alg. Geom. Bowdoin 1985. Proc. Symp. Pure Math. vol. 46, Part 1 (1987), 435450.CrossRefGoogle Scholar
[9]Reid, M.. Canonical 3-folds. Journées Géom. Alg. d'angers (Sijthoff and Noordhoff, Alphen aan den Rijn (1980)), 273–310.Google Scholar
[10]Reid, M.. Young person' guide to canonical singularities. Alg. Geom. Bowdoin 1985. Proc. Symp. Pure Math. vol. 46, Part 1 (1987), 345414.CrossRefGoogle Scholar
[11]Sakai, F.. Weil divisors on normal surfaces. Duke Math. J. 51 (1984), 877887.CrossRefGoogle Scholar
[12]Sakai, F.. Anticanonical models of rational surfaces. Math. Ann. 269 (1984), 389410.CrossRefGoogle Scholar
[13]Sakai, F.. Ample Cartier divisors on normal surfaces. J. reine angew. Math. 366 (1986), 121128.Google Scholar
[14]Serrano, F.. Fibred surfaces and moduli. Duke Math. J. 67 (1992), 407421.CrossRefGoogle Scholar
[15]Sepiro, L.. Propriétés numériques du faisceaux dualisant relatif. Astérisque 86 (1981), 4478.Google Scholar
[16]Zariski, O.. The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface. Ann. of Math. 76 (1962), 560615.CrossRefGoogle Scholar