Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T08:44:43.007Z Has data issue: false hasContentIssue false

The Schwartz property and nuclearity of spaces of smooth and holomorphic functions in infinite dimensions

Published online by Cambridge University Press:  24 October 2008

Sten Bjon
Affiliation:
Department of Mathematics, Åbo Akademi, SF-20500 Åbo, Finland

Extract

In [8] it was shown that a locally convex space E is a Schwartz space if and only if the convergence algebras Hc(U) and He(U) of holomorphic functions on an open subset of E coincide, i.e. if and only if continuous convergence c (see [1]) and the associated equable convergence structure e (= local uniform convergence, see [2, 13]) coincide.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Binz, E.. Continuous Convergence on C(X). Lecture Notes in Math. vol. 469 (Springer-Verlag, 1975).CrossRefGoogle Scholar
[2]Bjon, S.. Eine ausgeglichene Limitierung auf Räumen n-linearer Abbildungen zwischen Limesvektorräumen. Soc. Sci. Fenn. Comment. Phys.-Math. 43 (1973), 189201.Google Scholar
[3]Bjon, S.. Einbettbarkeit in den Bidualraum und Darstellbarkeit als projektiver Limes in Kategorien von Limesvektorräumen. Math. Nachr. 97 (1979), 103116.CrossRefGoogle Scholar
[4]Bjon, S.. On nuclear limit vector spaces. In Categorical Aspects of Topology and Analysis, Lecture Notes in Math. vol. 915 (Springer-Verlag, 1982). pp. 2739.CrossRefGoogle Scholar
[5]Bjon, S.. Differentiation under the integral sign and holomorphy. Math. Scand. 60 (1987), 7795.CrossRefGoogle Scholar
[6]Bjon, S.. The approximation property for nuclear convergence vector spaces. Math. Nachr. 142 (1989), 267275.CrossRefGoogle Scholar
[7]Bjon, S. and Lindström, M.. A general approach to infinite-dimensional holomorphy. Monatsh. Math. 101 (1986), 1126.CrossRefGoogle Scholar
[8]Bjon, S. and Lindström, M.. Characterization of Schwartz-spaces by their holomorphic duals. Proc. Amer. Math. Soc. 102 (1988), 909913.CrossRefGoogle Scholar
[9]Boland, P. J.. An example of a nuclear space in infinite dimensional holomorphy. Arkiv för Math. 15 (1975), 8791.(1975).CrossRefGoogle Scholar
[10]Colombeau, J. F.. Differential Calculus and Holomorphy. North-Holland Math. Studies no. 64 (North-Holland, 1982).Google Scholar
[11]Dineen, S.. Complex Analysis in Locally Convex Spaces. North-Holland Math. Studies no. 57 (North-Holland, 1981).Google Scholar
[12]Fischer, H. R.. Limesräume. Math. Ann. 137 (1959), 269303.CrossRefGoogle Scholar
[13]Frölicher, A. and Bucher, W.. Calculus in vector spaces without norm. Lecture Notes in Math, vol. 30 (Springer-Verlag, 1971).Google Scholar
[14]Gähler, W.. Grundstrukturen der Analysis, Band 2 (Akademie-Verlag, 1978).Google Scholar
[15]Hogbe-Nlend, H.. Bornologies and Functional Analysis. North-Holland Math. Studies no. 26 (North-Holland, 1977).Google Scholar
[16]Jarchow, H.. Marinescu-Räume. Comment. Math. Helv. 44 (1969), 138163.CrossRefGoogle Scholar
[17]Jarchow, H.. Duale Charakterisierung der Schwartz–Räume. Math. Ann. 196 (1972), 8590.CrossRefGoogle Scholar
[18]Lindström, M.. On Schwartz convergence vector spaces. Math. Nachr. 117 (1984), 3749.CrossRefGoogle Scholar
[19]Meise, R.. Spaces of differentiable functions and the approximation property. In Approximation Theory and Functional Analysis, Notas de Matemática no. 66 (North-Holland, 1979).Google Scholar
[20]Pietsch, A.. Nuclear Locally Convex Spaces. Ergeb. Math. Grenzgeb. vol. 66 (Springer-Verlag, 1972).Google Scholar
[21]Swart, J.. Zur Theorie der Schwartz-Räume. Math. Ann. 211 (1974), 261276.CrossRefGoogle Scholar