Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T08:10:46.475Z Has data issue: false hasContentIssue false

Rotating fluid masses in general relativity. II

Published online by Cambridge University Press:  24 October 2008

R. H. Boyer
Affiliation:
University of Liverpool

Abstract

We describe some properties of a stationary, isolated, axially symmetric, rotating body of perfect fluid, according to general relativity. We first specialize to the case of constant specific entropy and constant angular velocity. The latter condition is equivalent to rigidity in the Born sense; both conditions are consequences of a simple variational principle. The hydrodynamic equations can then be integrated completely. Analogous first integrals are given also for the case of differential rotation. No use is made of the full field equations.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Boyer, R. H.Rotating fluid masses in general relativity. Proc. Cambridge Philos. Soc. 61 (1965), 527530.CrossRefGoogle Scholar
(2)Boyer, R. H.Rigid frames in general relativity. Proc. Roy. Soc. London, Ser. A 283 (1965), 345355.Google Scholar
(3)Boyer, R. H. and Lindquist, R. W.A variational principle for a rotating relativistic fluid. Phys. Lett. 20 (1966), 504506.CrossRefGoogle Scholar
(4)Boyer, R. H. and Price, T. G.An interpretation of the Kerr metric in general relativity. Proc. Cambridge Philos. Soc. 61 (1965), 531534.CrossRefGoogle Scholar
(5)Eckart, C.Relativistic theory of the simple fluid. Phys. Rev. 58 (1940), 919924.CrossRefGoogle Scholar
(6)SirJeans, James H.Astronomy and cosmogony (Cambridge, 1929).Google Scholar
(7)Kerr, R. P.Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 9 (1963), 237238.CrossRefGoogle Scholar
(8)Lense, J. and Thirring, H.Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. 19 (1918), 156163.Google Scholar
(9)Lichnerowicz, A.Théories relativistes de la gravitation et de l'électromagnétisme (Masson; Paris, 1955).Google Scholar
(10)Newman, E. T. and Janis, A. I.A note on the Kerr spinning-particle metric. J. Mathematical Phys. 6 (1965), 915917.CrossRefGoogle Scholar
(11)Papapetrou, A.Eine rotationssymmetrische Lösung in der allgemeinen Relativitätstheorie. Ann. Physik (6) 12 (1953), 309315.CrossRefGoogle Scholar
(12)van Stockum, W. J.The gravitational field of a distribution of particles rotating about an axis of symmetry. Proc. Roy. Soc. Edinburgh, Sect. A 57 (1937), 135154.Google Scholar
(13)Synge, J. L.Relativistic hydrodynamics. Proc. London Math. Soc. (2) 43 (1937), 376415.Google Scholar
(14)Taub, A. H.On circulation in relativistic hydrodynamics. Arch. Rational Mech. Anal. 3. (1959), 312324.CrossRefGoogle Scholar