Published online by Cambridge University Press: 24 October 2008
Let S(Rn) be the space of Schwartz class functions. The dual space of S′(Rn), S(Rn), is called the temperate distributions. In this article, we call them distributions. For 1 ≤ p ≤ ∞, let FLp(Rn) = {f:∈ Lp(Rn)}, then we know that FLp(Rn) ⊂ S′(Rn), for 1 ≤ p ≤ ∞. Let U be open and bounded in Rn−1 and let M = {(x, ψ(x));x ∈ U} be a smooth hypersurface of Rn with non-zero Gaussian curvature. It is easy to see that any bounded measure σ on Rn−1 supported in U yields a distribution T in Rn, supported in M, given by the formula