Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T02:09:08.134Z Has data issue: false hasContentIssue false

Quasi-free stochastic integral representation theorems over the CCR

Published online by Cambridge University Press:  24 October 2008

Ivan F. Wilde
Affiliation:
Department of Mathematics, King's College, Strand, London WC 2R 2LS

Abstract

It is shown that each vector in the Hilbert space of certain quasi-free representations of the CCR can be written uniquely in terms of quantum stochastic integrals. As a consequence, we obtain general vector-valued and operator-valued boson quantum martingale representation theorems.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Barnett, C., Streater, R. F. and Wilde, I. F.. The Itô–Clifford integral. J. Funct. Anal. 48 (1982), 172212.CrossRefGoogle Scholar
[2]Barnett, C., Streater, R. F. and Wilde, I. F.. Quasi-free quantum-stochastic integrals for the CAR and CCR. J. Funct. Anal. 52 (1983), 1947.CrossRefGoogle Scholar
[3]Barnett, C., Streater, R. F. and Wilde, I. F.. The Itô–Clifford integral. IV. A Radon–Nikodym theorem and bracket processes. J. Operator Theory 11 (1984), 255271.Google Scholar
[4]Barnett, C. and Wilde, I. F.. Quantum Doob–Meyer decompositions. J. Operator Theory, to appear.Google Scholar
[5]Hudson, R. L. and Lindsay, J. M.. A non-commutative martingale representation theorem for non-Fock quantum Brownian motion. J. Funct. Anal. 61 (1985), 202221.CrossRefGoogle Scholar
[6]Journé, J.-L. and Meyer, P. A.. Une martingale d'operateurs bornés, non representable en integrale stochastique. In Séminaire Probabilité XX, Lecture Notes in Math. vol. 1204 (Springer-Verlag, 1986), pp. 313316.Google Scholar
[7]Lindsay, J. M.. A quantum stochastic calculus. Ph.D. Thesis, Nottingham University (1985).Google Scholar
[8]Lindsay, J. M.. Fermion martingales. Probab. Theory Rel. Fields 71 (1986), 307320.CrossRefGoogle Scholar
[9]Lindsay, J. M. and Wilde, I. F.. On non-Fock Boson stochastic integrals. J. Funct. Anal. 65 (1986), 7682.CrossRefGoogle Scholar
[10]Parthasarathy, K. R. and Sinha, K. B.. Stochastic integral representation of bounded quantum martingales in Fock space. J. Funct. Anal. 67 (1986), 126151.CrossRefGoogle Scholar
[11]Wilde, I. F.. Quantum martingales and stochastic integrals. In Quantum Probability and Applications III, Lecture Notes in Math. vol. 1303 (Springer-Verlag, 1988), pp 363373.CrossRefGoogle Scholar