Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T14:47:46.756Z Has data issue: false hasContentIssue false

Positive Herz–Schur multipliers and approximation properties of crossed products

Published online by Cambridge University Press:  14 August 2017

ANDREW MCKEE
Affiliation:
Mathematical Sciences Research Centre, Queen's University Belfast, Belfast BT7 1NN. e-mail: [email protected]
ADAM SKALSKI
Affiliation:
Institute of Mathematics of the Polish Academy of Sciences, ul. Śniadeckich 8, 00-656 Warszawa, Poland. e-mail: [email protected]
IVAN G. TODOROV
Affiliation:
Mathematical Sciences Research Centre, Queen's University Belfast, Belfast BT7 1NN. e-mail: [email protected]
LYUDMILA TUROWSKA
Affiliation:
Department of Mathematical Sciences, Chalmers University of Technology and the University of Gothenburg, Gothenburg SE-412 96, Sweden. e-mail: [email protected]

Abstract

For a C*-algebra A and a set X we give a Stinespring-type characterisation of the completely positive Schur A-multipliers on κ(ℓ2(X)) ⊗ A. We then relate them to completely positive Herz–Schur multipliers on C*-algebraic crossed products of the form Aα,rG, with G a discrete group, whose various versions were considered earlier by Anantharaman-Delaroche, Bédos and Conti, and Dong and Ruan. The latter maps are shown to implement approximation properties, such as nuclearity or the Haagerup property, for Aα,rG.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[A-D] Anantharaman-Delaroche, C. Systémes dynamiques non commutatifs et moyennabilité. Math. Ann. 279 (1987), no. 2, 297315.Google Scholar
[BéC] Bédos, É. and Conti, R.. The Fourier-Stieltjes algebra of a C*-dynamical system. Internat. J. Math. 27 (2016), no. 6, 1650050, 50 pp., available at arXiv:1510.03296.Google Scholar
[Bra] Brannan, M. Approximation properties for locally compact quantum groups. Banach Center Publ. 111 (2017), 185232, available at arXiv:1605.01770.Google Scholar
[BrO] Brown, N. P. and Ozawa, N. C*-algebras and finite dimensional approximations. Amer. Math. Soc. (2008).Google Scholar
[Cho] Choda, M. Group factors of the Haagerup type. Proc. Japan Acad. 59, (1983), 174209.Google Scholar
[ChE] Choi, M. D. and Effros, E. Nuclear C*-algebras and the approximation property. Amer. J. Math. 100 (1978), no. 1, 6179.Google Scholar
[Don] Dong, Z. Haagerup property for C*-algebras. J. Math. Anal. Appl. 377, (2010), 631644.Google Scholar
[DoR] Dong, Z. and Ruan, Z.J. A Hilbert module approach to the Haagerup property. Integral Equations Operator Theory 73 (2012), 431454.Google Scholar
[EfR] Effros, E. G. and Ruan, Z.–J.. Operator Spaces (Oxford University Press, 2000).Google Scholar
[Gro] Grothendieck, A. Résumé de la théorie métrique des produits tensoriels topologiques. Boll. Soc. Mat. Sao-Paulo 8 (1956), 179.Google Scholar
[Jol] Jolissaint, P. Haagerup approximation property for finite von Neumann algebras. J. Operator Theory. 48 (2002), 539551.Google Scholar
[Lan] Lance, C. On nuclear C*-algebras. J. Funct. Ana. 12 (1973), 157176.Google Scholar
[McK] McKee, A. Weak amenability for dynamical systems. Preprint, arXiv:1612.01758.Google Scholar
[MTT] McKee, A., Todorov, I. G. and Turowska, L.. Herz–Schur multipliers of dynamical systems. Preprint, arXiv:1608.01092.Google Scholar
[Men] Meng, Q. Haagerup property of C*-algebras. Bull. Aust. Math. Soc. 93 (2016), no. 2, 295300.Google Scholar
[NeS] Neshveyev, S. and Størmer, E. Dynamical entropy in operator algebras. Series of Modern Surveys in Mathematics. 50 (Springer, 2006).Google Scholar
[Pau] Paulsen, V. I. Completely Bounded Maps and Operator Algebras. (Cambridge University Press, 2002).Google Scholar
[Pis] Pisier, G. Similarity problems and completely bounded maps. Lecture Notes in Math. 1618 (Springer, 2001).Google Scholar
[SiS] Sinclair, A. M. and Smith, R. R. The completely bounded approximation property for discrete crossed products. Indiana Univ. Math. J. 46 (1997), no. 4, 13111322.Google Scholar
[You] You, C. Haagerup property for C*-crossed products. Bull. Aust. Math. Soc. 95 (2017), no. 1, 144148.Google Scholar