Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T16:45:25.151Z Has data issue: false hasContentIssue false

Parametric surfaces

I. Area

Published online by Cambridge University Press:  24 October 2008

E. R. Reifenberg
Affiliation:
Trinity CollegeCambridge

Extract

1. In this paper I consider various properties of the area of a surface including the relationship between Hausdorff measure and the Lebesgue area. The results here obtained will enable me, in a subsequent paper, to investigate the tangential properties of parametric surfaces. For simplicity of exposition I confine my attention to surfaces homoeomorphic to a disk, but the general case follows easily from cyclic element theory.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1951

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Besicovitch, A. S.A general form of the covering principle and the relative differentiation of additive functions. I. Proc. Cambridge Phil. Soc. 41 (1945), 103–10.Google Scholar
(2)Besicovitch, A. S.On the fundamental geometrical properties of linearly measurable plane sets of points. II. Math. Ann. 115 (1938), 296329.Google Scholar
(3)Besicovitch, A. S. On the definition and value of the area of a surface. Quart. J. Math. (Oxford), 16 (1945), 86102.Google Scholar
(4)Besicovitch, A. S.On surfaces of minimum area. Proc. Cambridge Phil. Soc. 44 (1948), 313–34.Google Scholar
(5)Besicovitch, A. S.Parametric surfaces. I. Compactness. Proc. Cambridge Phil. Soc. 45 (1949), 513.CrossRefGoogle Scholar
(6)Besicovitch, A. S.Parametric surfaces. II. Lower-semi-continuity. Proc. Cambridge Phil. Soc. 45 (1949), 1423.Google Scholar
(7)Besicovitch, A. S.Parametric surfaces. III. Surfaces of minimum area. J. London Math. Soc. 23 (1948), 241–6.Google Scholar
(8)Federer, H.Hausdorff measure and Lebesgue area. Bull. American Math. Soc. (to be published).Google Scholar
(9)Youngs, J. W. T.The topological theory of Fréchet surfaces. Ann. Math. 45 (1944), 753–85.Google Scholar
(10)Courant, R. and Hilbert, D.Methoden der Mathematischen Physik 1 (Berlin, 1924), Chapter ii, § 2.Google Scholar