Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T02:37:39.443Z Has data issue: false hasContentIssue false

Order and commutativity in C*-algebras

Published online by Cambridge University Press:  24 October 2008

R. J. Archbold
Affiliation:
University of Aberdeen

Extract

In this paper, we use the results of (3) to show that a condition which is formally much weaker than that given by Sherman in (11) is necessary and sufficient for the commutativity of a C*-algebra. The basic idea behind the proof is then used again to obtain a characterization in order-theoretic terms of the self-adjoint elements in the centre of a C*-algebra. We shall use the notation and terminology of (3).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Alfsen, E. M. and Anderson, T. B.On the concept of centre in A(K). J. L. Math. Soc. (2), 4 (1972), 411417.CrossRefGoogle Scholar
(2)Anderson, T. B.On multipliers and order bounded operators in C*-algebras. Proc. Amer. Math. Soc. 25 (1970), 896899.Google Scholar
(3)Archbold, R. J.Prime C*-algebras and antilattices. Proc. London Math. Soc. (3) 24 (1972), 669680.CrossRefGoogle Scholar
(4)Archbold, R. J. Certain properties of operator algebras. Ph.D. thesis, The University of Newcastle upon Tyne, 1972.Google Scholar
(5)Archbold, R. J. Density theorems for the centre of a C*-algebra. To be published by London Math. Soc.Google Scholar
(6)Delaroche, C.Sur les centres des C*-algèbres. Bull. Sci. Math. 91 (1967), 105112.Google Scholar
(7)Delaroche, C.Sur les centres des C*-algèbres, II. Bull. Sci. Math. 92 (1968), 111128.Google Scholar
(8)Dixmier, J.Les C*-algèbres et leurs représentations, 2nd edition (Gauthier-Villars; Paris, 1969).Google Scholar
(9)Kadison, R. V.Order properties of bounded self-adjoint operators. Proc. Amer. Math. Soc. 2 (1951), 505510.CrossRefGoogle Scholar
(10)Rogalski, M.Calcul fonctionel et décomposition spectrale dans le centre d'un espace A(K). C.R. Acad. Sci. Paria, Sér. A 270 (1970), 820823.Google Scholar
(11)Sherman, S.Order in operator algebras. Amer. J. Math. 73 (1951), 227232.CrossRefGoogle Scholar