Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T08:25:18.291Z Has data issue: false hasContentIssue false

On the product of three homogeneous linear forms

Published online by Cambridge University Press:  24 October 2008

J. H. H. Chalk
Affiliation:
Princeton University and The Institute for Advanced StudyPrinceton, N.J.
C. A. Rogers
Affiliation:
Princeton University and The Institute for Advanced StudyPrinceton, N.J.

Extract

Let X denote the general point with coordinates (x1, x2, x3) in 3-dimensional space; and let P(X) be the function defined by

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1951

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

* Davenport, H.Proc. London Math. Soc. (2), 44 (1938), 412–31CrossRefGoogle Scholar; for a simpler proof, see Davenport, H.J. London Math. Soc. 16 (1941), 98101.CrossRefGoogle Scholar

Davenport, H.Proc. Cambridge Phil. Soc. 39 (1943), 121.CrossRefGoogle Scholar

Mahler, K.Proc. K. Ned. Akad. Wet. Amsterdam, 49 (1946), 331–43, 444–54, 524–32, 622–31Google Scholar (Theorem M, p. 527).

§ Davenport, H. and Rogers, C. A.Philos. Trans. Roy. Soc. A, 242 (1950), 311–44CrossRefGoogle Scholar, § 8.

Loc. cit., Corollary to Theorem 12.

* J. London Math. Soc. 16 (1941), 98101.Google Scholar

* Loc. cit. (1941).

* We use the method of Davenport, loc. cit. (1941).