Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T13:37:31.262Z Has data issue: false hasContentIssue false

On the number of terms in a simple algebraic form

Published online by Cambridge University Press:  24 October 2008

D. E. Littlewood
Affiliation:
University CollegeSwansea

Extract

In a note in the April 1942 issue of these Proceedings, Hodge gives a formula for the number of independent terms in what he calls a k-connex, but while conjecturing its general validity he proves it only for very restricted cases. Its truth is here demonstrated in the general case.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1942

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

* Hodge, W. V. D, ‘A note on connexes’, Proc. Cambridge Phil. Soc. 38 (1942), 129–43.CrossRefGoogle Scholar

In tensor calculus the word ‘contragredient’ is usual.

Schur, I., ‘Über eine Klasse von Matrizen die sich einer gegebenen Matrix zuordnen lassen’, Inaugural Dissertation, Berlin (1901)Google Scholar; or see Littlewood, D. E., The theory of group characters and matrix representations of groups (Oxford, 1940)Google Scholar, Chapter x. This work will be referred to as G.C. See also Littlewood, D. E., ‘Polynomial concomitants and invariant matrices’, J. London Math. Soc. 11 (1936), 49, or G.C., 203.CrossRefGoogle Scholar

§ See G.C., Chapter x.

* Littlewood, D. E. and Richardson, A. R., ‘Immanants of some special matrices’, Quarterly J. Math. 5 (1934), 269.CrossRefGoogle Scholar See also ‘Some special S-functions and q-series’, Quarterly J. Math. 6 (1935), 184; or G.C., Chapter vii.Google Scholar

See Turnbull, H. W., The theory of determinants, matrices and invariants, Chapter xvi (London and Glasgow, 1928).Google Scholar

Schur, I., ‘Neue Anwendung der Integralrechnung auf Probleme der Invariantentheorie’, Sitzungsberichte Preuss. Akad. (1924), 189, 297, 346. Or see G.C. 236.Google Scholar