Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T13:47:53.911Z Has data issue: false hasContentIssue false

On the iteration of rational functions

Published online by Cambridge University Press:  24 October 2008

V. Garber
Affiliation:
29 Greenway, Kenton, Middlesex, HA3 0TS

Extract

In the theory of the iteration of a rational function or transcendental entire function R(z) of the complex variable z we study the sequence of natural iterates, {Rn(z):n = 0, 1,…}, of R, where

The domain of definition of the iterates is , the extended complex plane (if R is rational), and (if R is entire transcendental) with the topology of the chordal metric and euclidean metric respectively. Fatou(5) and Julia(9) developed a global theory of the iteration of a rational function. In (6) Fatou extended the theory of (5) to transcendental entire functions. A central role is played in the theory by the F-set, F(R), of R, R rational or entire, which is defined to be the set of points at which the family of iterates do not form a normal family in the sense of Montel.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Baker, I. N.Repulsive fixpoints of entire functions. Math. Zeit. 104 (1968), 252256.CrossRefGoogle Scholar
(2)Baker, I. N.The domains of normality of an entire function. Ann. Acad. Sci. Fenn. 1 (1975), 277283.Google Scholar
(3)Beardon, A. F.The Hausdorff dimension of singular sets of properly discontinuous groups. Amer. J. Math. 88 (1966), 722736.Google Scholar
(4)Brolin, H.Invariant sets under iteration of rational functions. Arkiv för Matematik 6 (1965), 103144.Google Scholar
(5)Fatou, P.Sur les equations fonctionelles. Bull. Soc. Math. France 47 (1919), 161271.Google Scholar
Fatou, P.Sur les equations fonctionelles. Bull. Soc. Math. France 48 (1920), 3394, 208–314.Google Scholar
(6)Fatou, P.Sur l'itération des fonctions transcendantes entières. Acta Math. 47 (1926), 337370.Google Scholar
(7)Garber, V. On the iteration of rational and entire functions. Ph.D. thesis, Cambridge University (1975).Google Scholar
(8)Hille, E.Analytic Function Theory, vol. 2 (Ginn and Co., 1962).Google Scholar
(9)Julia, G.Mémoire sur l'itération des fonctions rationelles. J. Math. Pures Appl. (8), 1 (1918), 47245.Google Scholar
(10)Landkof, N. S.Foundations of modern potential theory (Springer-Verlag, 1972).Google Scholar
(11)Oba, M. K. & Pitcher, T. S.A new characterisation of the F-set of a rational function. Trans. Amer. Math. Soc. 166 (1972), 297308.Google Scholar
(12)Pitches, T. S. & Kinney, J. R.Some connections between ergodic theory and the iteration of polynomials. Arkiv för Matematik 8 (1969), 2532.Google Scholar
(13)Taylor, S. J.On the connexion between Hausdorff measures and generalised capacities. Proc. Cambridge Philos. Soc. 57 (1961), 524531.CrossRefGoogle Scholar