Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T05:04:19.564Z Has data issue: false hasContentIssue false

On the construction of irreducible representations of the symmetric group

Published online by Cambridge University Press:  24 October 2008

J. R. Gabriel
Affiliation:
Theoretical Physics Division, Atomic Energy Research Establishment, Harwell

Abstract

A simple method for constructing irreducible representations of the symmetric group is given. It is particularly suitable for use in quantum mechanical calculation of interactions in many particle systems, using electronic digital computers.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1961

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Corson, E. M., Perturbation methods in quantum mechanics (London and Glasgow, 1951).Google Scholar
(2)Dirac, P. A. M., Quantum mechanics (Oxford, 1947).Google Scholar
(3)Dirac, P. A. M., Proc. Roy. Soc. A, 123 (1929), 714.Google Scholar
(4)Johnston, D. F., Group theory in solid state physics, part 2, §4. Rep. Progr. Phys. 23 (1960).CrossRefGoogle Scholar
(5)Ledermann, W., Introduction to the theory of finite groups (Edinburgh and London, 1953).Google Scholar
(6)Mattheiss, L. F., (Private communication); M.I.T. Solid State and Molecular Theory Group, Quarterly Progress Report, no. 31, 15 01 1959.Google Scholar
(7)Serber, R., Phys. Rev. 45 (1934), 461.CrossRefGoogle Scholar
(8)van der Waerden, B. L., Die gruppentheoretische Methoden der Quantenmechanik (Berlin, 1932).CrossRefGoogle Scholar
(9)van Vleck, J. H., Phys. Rev. 45 (1934), 405.CrossRefGoogle Scholar
(10)Weyl, H., Theory of groups and quantum mechanics (London, 1931).Google Scholar
(11)Wigner, E. P., Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren (Braunschweig, 1931). (A revised English translation is to be published by Academic Press, N.Y. and London.)Google Scholar
(12)Yamanouchi, T., Proc. Phys.-Math. Soc. Japan, 17 (1935), 274.Google Scholar
(13)Yamanouchi, T., Proc. Phys.-Math. Soc. Japan, 18 (1936), 10; 23; 623.Google Scholar
(14)Yamanouchi, T., Proc. Phys.-Math. Soc. Japan, 19 (1937), 436.Google Scholar
(15)Yamanouchi, T., J. Phys. Soc. Japan, 3 (1948), 245.CrossRefGoogle Scholar
(16)Young, A., Proc. Lond. Math. Soc. 33 (1900), 97146.Google Scholar
(17)Young, A., Proc. Lond. Math. Soc. 34 (1902), 361–97.Google Scholar
(18)Young, A., Proc. Lond. Math. Soc. (2), 28 (1927), 255–92.Google Scholar
(19)Young, A., Proc. Lond. Math. Soc. (2), 31 (1929), 253–72.Google Scholar
(20)Young, A., Proc. Lond. Math. Soc. (2), 31 (1929), 273–88.Google Scholar
(21)Young, A., Proc. Lond. Math. Soc. (2), 34 (1931), 196230.Google Scholar
(22)Young, A., Proc. Lond. Math. Soc. (2), 35 (1931), 425–44.Google Scholar
(23)Young, A., Proc. Lond. Math. Soc. (2), 36 (1932), 304–68.Google Scholar
(24)Young, A., Proc. Lond. Math. Soc. (2), 37 (1933), 441–95.Google Scholar