Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-24T12:17:44.763Z Has data issue: false hasContentIssue false

On the asymptotic probability distribution for certain Markoff processes

Published online by Cambridge University Press:  24 October 2008

Walter Ledermann
Affiliation:
Department of MathematicsUniversity of Manchester

Extract

The type of Markoff process which is considered in this paper corresponds to a system capable of n states, the time being regarded as a continuously varying parameter. At any instant t the probability distribution is represented by the vector

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1950

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Brauer, A.Limits for the characteristic roots of a matrix. Duke Math. J. 13 (1946), 387395.CrossRefGoogle Scholar
(2)Doeblin, W.Sur l'équation matricielle A (t+s) = A (t)A (s) et ses applications aux probabilités en chaîne. Bull. Sci. Math. 62 (1938), 2132 and 64 (1940), 3537.Google Scholar
(3)Fréchet, M.Méthode, des fonctions arbitraires (Traité du Calcul des Probabilités et de ses Applications, ed. by Borel, E.), tome 1, fasc. 3, livre 2 (Paris 1938).Google Scholar
(4)Frobenius, G.Über Matrizen aus positiven Elementen. S.B. Preuss. Akad. Wiss. (1908), pp. 471476.Google Scholar
(5)Gersgorin, S.Über die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk. S.S.S.R. 7 (1931), 749754.Google Scholar
(6)Minkowski, H.Zur Theorie der Einheiten in algebraischen Zahlkörpern. Göttingen Nachr. ges. Wiss (1900), 9093Google Scholar
Gesammelte Abhandlungen, 1 (Leipzig, 1911), 316319.Google Scholar
(7)Mises, R. von. Wahrscheinlichkeitsrechnung (Leipzig, 1931).Google Scholar
(8)Perron, O.Algebra II, 2nd ed. (Berlin, 1933), 3541.Google Scholar
(9)Prendiville, B. J.Contribution to discussion: Symposium on stochastic processes. J. Roy. Statist Soc. B, 11 (1949) (in the Press).Google Scholar
(10)Taussky, Olga.A recurring theorem on determinants. Am. Math. Mon. 56 (1949), 672676.CrossRefGoogle Scholar
(11)Turnbull, H. W. and Aitken, A. C.Introduction to the theory of canonical matrices (Glasgow, 1932).Google Scholar