Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T01:41:32.908Z Has data issue: false hasContentIssue false

On Fréchet Montel spaces and their projective tensor product

Published online by Cambridge University Press:  24 October 2008

Juan Carlos Díaz
Affiliation:
Departamento de Matemática Aplicada, E.T.S.I. Agrónomos, 14004 Górdoba, Spain
M.Angeles Miñarro
Affiliation:
Departamento de Matemática Aplicada, E.T.S.I. Agrónomos, 14004 Górdoba, Spain

Abstract

The main result in this note is as follows. Let E be a Fréchet Montel space which belongs to the large class of decomposable (FG)-spaces introduced by Bonet, Díaz, Taskinen and let F be a Fréchet Montel (resp. distinguished) space. Then the projective tensor product is Montel (resp. distinguished). We also give examples of Montel decomposable (FG)-spaces without an unconditional basis.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ansemil, J. M. and Ponte, S.. The compact open and the Nachbin Ported topologies on spaces of Holomorphic functions, Arch. Math. (Basel) 51 (1988), 6570.CrossRefGoogle Scholar
[2]Ansemil, J. M. and Taskinen, J.. On a problem of topologies in infinite dimensional holomorphy. Arch. Math. (Basel) 54 (1990), 6164.CrossRefGoogle Scholar
[3]Bellenot, S. F.. Basic sequences in non-Schwartz-Fréchet spaces. Trans Amer. Math. Soc. 258 (1980), 199216.Google Scholar
[4]Bierstedt, K. D. and Bonet, J.. Stefan Heinrich's density condition for Fréchet spaces and the characterization of the distinguished Köthe echelon spaces. Math. Nathr. 135 (1988), 149180.Google Scholar
[5]Bonet, J. and Defant, A.. Projective tensor products of distinguished Fréchet spaces. Proc. Roy. irish Aced. Sect. A 85 (1985), 193199.Google Scholar
[6]Bonet, J. and Díaz, J. C.. The problem of topologies of Grothendieck and the class of Fréchet T-spaces. Math. Nachr. 150 (1991), 109118.CrossRefGoogle Scholar
[7]Bonet, J., Díaz, J. C. and Taskinen, J.. Tensor stable Fréchet and (DF) spaces. Collect. Math. 42 (1991), 83120.Google Scholar
[8]Defant, A. and Moraes, L. A.. Absolute and unconditional bases in spaces of holomorphic functions in infinite dimensions. Arch. Math. (Basel) 56 (1991), 163173.Google Scholar
[9]Díaz, J. C. and López Molina, J. A.. On the projective tensor products of Fréchet spaces. Proc. Edinburgh Math. Soc. (2) 34 (1991), 169178.CrossRefGoogle Scholar
[10]Díaz, J. C. and Miñarro, M. A.. Distinguished Fréchet spaces and projective tensor product. Doğa Mat. 14 (1990), 191208.Google Scholar
[11]DieroLf, S.. On spaces of continuous linear mappings between locally convex spaces. Note Mat. 5 (1985), 147255.Google Scholar
[12]Dineen, S.. Holomorphic functions of Fréchet–Montel spaces. J. Math. Anal. Appl. 163 (1992), 581587.Google Scholar
[13]Dineen, S.. Holomorphic functions and the (BB)-property. (Preprint).Google Scholar
[14]Florencio, M. and Paúl, P. J.. Barrelledness conditions on certain vector valued sequence spaces. Arch. Math. (Basel) 48 (1987), 153164.Google Scholar
[15]Galindo, P., García, D. and Maestre, M.. The coincidence of τ0 and τω for spaces of holomorphic functions on some Fréchet Montel spaces. Proc. Roy. Irish Acad. Sect. A 91 (1991), 137143.Google Scholar
[16]Grothendieck, A.. Produits Tensoriels Topologiques et Espaces Nucléaires. Memoirs Amer. Math. Soc. no. 16 (American Mathematical Society, 1955).Google Scholar
[17]Köthe, G.. Topological Vector Spaces, vol. 2 (Springer-Verlag, 1979).Google Scholar
[18]Lindenstrauss, J. and Tzafriri, L.. Classical Banach Spaces, vol. 1 (Springer-Verlag, 1977).Google Scholar
[19]Carreras, P. Pérez and Bonet, J.. Barrelled Locally Convex Spaces. North Holland Math. Studies no. 131 (North Holland, 1987).Google Scholar
[20]Singer, I.. Bases in Banach Spaces, vol. 1 (Springer-Verlag, 1970).Google Scholar
[21]Taskinen, J.. Counterexamples to “Problème des Topologies” of Grothendieck (Academia Scientiarum Fennicae, 1986).Google Scholar
[22]Taskinen, J.. The projective tensor product of Fréchet Montel spaces. Studia Math. 91 (1988), 1730.CrossRefGoogle Scholar
[23]Taskinen, J.. Examples of non-distinguished Fréchet spaces. Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), 7588.CrossRefGoogle Scholar