Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T02:12:32.091Z Has data issue: false hasContentIssue false

On commutative semigroup algebras

Published online by Cambridge University Press:  24 October 2008

W. D. Munn
Affiliation:
University of Glasgow

Extract

This paper is concerned with the problem of finding necessary and sufficient conditions on a commutative semigroup S for the algebra FS of S over a field F to be semiprimitive (Jacobson semisimple).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Amitsur, S. A.On the semi-simplicity of group algebras. Michigan Math. J. 6 (1959), 251253.CrossRefGoogle Scholar
(2)Clifford, A. H. and Preston, G. B.The algebraic theory of semigroups, vol. I. Math. Surveys of the Amer. Math. Soc. 7 (Providence, R.I., 1961).Google Scholar
(3)Hewitt, E. and Zuckerman, H. S.The l 1-algebra of a commutative semigroup. Trans. Amer. Math. Soc. 83 (1956), 7097.Google Scholar
(4)Howie, J. M.An introduction to semigroup theory (Academic Press, London, 1976).Google Scholar
(5)Krempa, J. and Sierpińska, A.The Jacobson radical of certain group and semigroup rings. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 26 (1978), 963967.Google Scholar
(6)Munn, W. D.Semiprimitivity of inverse semigroup algebras. Proc. Roy. Soc. Edinburgh A. 93 (1982), 8398.CrossRefGoogle Scholar
(7)Parker, T. and Gilmer, R.Nilpotent elements of commutative semigroup rings. Michigan Math. J. 22 (19751976), 97108.Google Scholar
(8)Passman, D.The algebraic structure of group rings (Wiley, New York, 1977).Google Scholar
(9)Preston, G. B.Rédei's characterization of congruences on finitely generated free commutative semigroups. Acta Math. Acad. Sci. Hung. 26 (1975), 337342.CrossRefGoogle Scholar
(10)Schneider, H. and Weissglass, J.Group rings, semigroup rings and their radicals. J. Algebra 5 (1967), 115.CrossRefGoogle Scholar
(11)Tamura, T.Commutative nonpotent archimedean semigroup with cancellation law I. J. Gakugei Tokushima Univ. 8 (1957), 511.Google Scholar
(12)Tamura, T. and Kimura, N.On decompositions of a commutative semigroup. Kodai Math. Sem. Rep. 4 (1954), 109112.Google Scholar
(13)Teply, M. L., Turman, E. G. and Quesada, A.On semisimple semigroup rings. Proc. Amer. Math. Soc. 79 (1980), 157163.CrossRefGoogle Scholar
(14)Weissglass, J.Semigroup rings and semilattice sums of rings. Proc. Amer. Math. Soc. 39 (1973), 471478.CrossRefGoogle Scholar

SUPPLEMENTARY REFERENCES

(A1)Connell, I. G.On the group ring. Canad. J. Math. 15 (1963), 650685.CrossRefGoogle Scholar
(A2)Sierpińska, A.K-completeness and its application to radicals of semigroup rings. Demonstratio Math. 13 (1980), 641645. [MR82c: no. 16009.]Google Scholar