Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T01:28:57.230Z Has data issue: false hasContentIssue false

On certain expansions of the solutions of Mathieu'S differential equation

Published online by Cambridge University Press:  24 October 2008

A. Erdélyi
Affiliation:
Mathematical InstituteThe UniversityEdinburgh 1 Communicated by E. T. Whittaker

Extract

1. There are several known types of expansions of Mathieu functions, i.e. mod 2π periodic solutions of Mathieu's equation ((9), chap. 19),

The simplest expansion is the Fourier series

Almost equally well known are Heine's expansion ((4), p. 414; see also (5) and (6))

and

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1942

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Bickley, W. G. Notes on Mathieu functions. I. A class of hyperbolic Mathieu functions. Phil. Mag. (7), 30 (1940), 312–22.CrossRefGoogle Scholar
(2)Dougall, J.The solution of Mathieu's differential equation. Proc. Edinburgh Math. Soc. 34 (19151916), 176–96.Google Scholar
(3)Goldstein, S.Mathieu functions. Trans. Cambridge Phil. Soc. 23 (1927), 303–36.Google Scholar
(4)Heine, E.Handbuch der Kugelfunctionen (Berlin, 18781881).Google Scholar
(5)Särchinger, E.Beitrag zur Theorie der Funktionen des elliptischen Zylinders. (Programm Gymn. Chemnitz, 1894).Google Scholar
(6)Schubert, H. Über die Integration der Differentialgleichung (Dissertation, Königsberg 1886).Google Scholar
(7)Sieger, B.Die Beugung einer ebenen elektrischen Welle an einem Schirm von elliptischem Querschnitt. Ann. Phys., Leipzig, (4) 27 (1908), 626–64.CrossRefGoogle Scholar
(8)Whittaker, E. T.On a class of differential equations whose solutions satisfy integral equations. Proc. Edinburgh Math. Soc. 33 (19141915); 1423.CrossRefGoogle Scholar
(9)Whittaker, E. T. and Watson, G. N.Modern analysis (Cambridge, 1927).Google Scholar