Published online by Cambridge University Press: 24 October 2008
The purpose of this note is to present a few facts about the Julia set of a rational function that are well known to the experts in the subject of complex dynamics but whose documented exposition in the literature seems to need a little clarification. For example, under conditions set out in Theorem 1, the Julia set of a rational function can be expressed as the limit of a sequence of finite sets. In particular, for certain choices of a point α, the Julia set is the limit as n increases of the inverse image sets R−n(α). This formulation is widely exploited in the backwards iteration algorithm to produce computer illustrations of Julia sets (see for example Section 5·4 of [14]).