Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T08:51:04.156Z Has data issue: false hasContentIssue false

Nonminimal bridge positions of torus knots are stabilized

Published online by Cambridge University Press:  04 May 2011

MAKOTO OZAWA*
Affiliation:
Department of Natural Sciences, Faculty of Arts and Sciences, Komazawa University, 1-23-1 Komazawa, Setagaya-ku, Tokyo, 154-8525, Japan. e-mail: [email protected]

Abstract

We show that any nonminimal bridge decomposition of a torus knot is stabilized and that n-bridge decompositions of a torus knot are unique for any integer n. This implies that a knot in a bridge position is a torus knot if and only if there exists a torus containing the knot such that it intersects the bridge sphere in two essential loops.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Alexander, J. W.On the subdivision of 3-space by a polyhedron. Nat. Acad. Proc. 10 (1924), 68.CrossRefGoogle ScholarPubMed
[2]Alexander, J. W. and Briggs, G. B.On types of knotted curves. Ann. of Math. (2) 28 (1926/27), 562586.CrossRefGoogle Scholar
[3]Bachman, D. and Derby-Talbot, R.Non-isotopic Heegaard splittings of Seifert fibered spaces. Algebr. Geom. Topol. 6 (2006), 351372.CrossRefGoogle Scholar
[4]Birman, J. S.On the stable equivalence of plat representations of knots and links. Canad. J. Math. 28 (1976), 264290.CrossRefGoogle Scholar
[5]Birman, J. S. and Menasco, W. W.Studying links via closed braids. IV. Composite links and split links. Invent. Math. 102 (1990), 115139. (Erratum: “Studying links via closed braids. IV. Composite links and split links”. Invent. Math. 160 (2005), 447–452.)CrossRefGoogle Scholar
[6]Bonahon, F. and Otal, J.-P.Scindements de Heegaard des espaces lenticulaires. C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), 585587.Google Scholar
[7]Casson, A. J. and Gordon, C. McA. Manifolds with irreducible Heegaard splittings of arbitrarily high genus. talk at MSRI (1985).Google Scholar
[8]Casson, A. J. and Gordon, C. McA.Reducing Heegaard splittings. Topology Appl. 27 (1987), 275283.CrossRefGoogle Scholar
[9]Coward, A. Algorithmically detecting the bridge number of hyperbolic knots. arXiv:0710.1262.Google Scholar
[10]Doll, H.A generalized bridge number for links in 3-manifolds. Math. Ann. 294 (1992), 701717.CrossRefGoogle Scholar
[11]Haken, W.Some results on surfaces in 3-manifolds. 1968 Studies in Modern Topology, pp. 39–98 (Amer. Math. Soc.)Google Scholar
[12]Hayashi, C.Stable equivalence of Heegaard splittings of 1-submanifolds in 3-manifolds. Kobe J. Math. 15 (1998), 147156.Google Scholar
[13]Hayashi, C. and Shimokawa, K.Heegaard splittings of the trivial knot. J. Knot Theory Ramifications 7 (1998), 10731085.CrossRefGoogle Scholar
[14]Hayashi, C. and Shimokawa, K.Thin position of a pair (3-manifold, 1-submanifold). Pacific J. Math. 197 (2001), 301324.CrossRefGoogle Scholar
[15]Jang, Y.Three-bridge links with infinitely many three-bridge spheres. Topology Appl. 157 (2010), 165172.CrossRefGoogle Scholar
[16]Jang, Y.A classification of 3-bridge algebraic links. The 5th East Asian School of Knots and Related Topics, January 11–16, 2009, Gyeongju, Korea.Google Scholar
[17]Kobayashi, T.A construction of 3-manifolds whose homeomorphism classes of Heegaard splittings have polynomial growth. Osaka J. Math. 29 (1992), 653674.Google Scholar
[18]Li, T.Heegaard surfaces and measured laminations I. The Waldhausen conjecture. Invent. Math. 167 (2007), 135177.CrossRefGoogle Scholar
[19]Lustig, M. and Moriah, Y.3-manifolds with irreducible Heegaard splittings of high genus. Topology 39 (2000), 589618.CrossRefGoogle Scholar
[20]Markov, A. A.Über die freie Äquivalenz geschlossener Zöpfe. Recueil Mathématique Moscou 1 (1935), 7378.Google Scholar
[21]Montesinos, J. M.Minimal plat representations of prime knots and links are not unique. Canad. J. Math. 28 (1976), 161167.CrossRefGoogle Scholar
[22]Moriah, Y., Schleimer, S. and Sedgwick, E.Heegaard splittings of the form H + nK. Comm. Anal. Geom. 14 (2006), 215247.CrossRefGoogle Scholar
[23]Otal, J.-P.Présentations en ponts du nœud trivial. C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), 553556.Google Scholar
[24]Otal, J.-P.Presentations en ponts des nœuds rationnels, Low-dimensional topology (Chelwood Gate, 1982), 143160, London Math. Soc. Lecture Note Ser., 95 (Cambridge University Press, 1985).Google Scholar
[25]Ozawa, M. Bridge position and the representativity of spatial graphs. arXiv:0909.1162.Google Scholar
[26]Reidemeister, K.Zur dreidimensionalen Topologie. Abh. Math. Sem. Univ. Hamburg 9 (1933), 189194.CrossRefGoogle Scholar
[27]Sakuma, M.Manifolds with infinitely many non-isotopic Heegaard splittings of minimal genus, preliminary report, (unofficial) proceedings of the conference on various structures on knots and their applications (Osaka City University) (1988), 172–179.Google Scholar
[28]Morimoto, K. and Sakuma, M.On unknotting tunnels for knots. Math. Ann. 289 (1991), 143167.CrossRefGoogle Scholar
[29]Reidemeister, K.Knoten und Gruppen. Abhandlungen Hamburg 5 (1926), 723.CrossRefGoogle Scholar
[30]Scharlemann, M.Thin position in the theory of classical knots. Handbook of knot theory, 429459, (Elsevier B. V., Amsterdam, 2005).Google Scholar
[31]Scharlemann, M. and Tomova, M.Uniqueness of bridge surfaces for 2-bridge knots. Math. Proc. Camb. Phil. Soc. 144 (2008), 639650.CrossRefGoogle Scholar
[32]Schubert, H.Über eine numerische Knoteninvariante. Math. Z. 61 (1954), 245288.CrossRefGoogle Scholar
[33]Schultens, J.Additivity of tunnel number for small knots. Comment. Math. Helv. 75 (2000), 353367.CrossRefGoogle Scholar
[34]Schultens, J.Additivity of bridge numbers of knots. Math. Proc. Camb. Phil. Soc. 135 (2003), 539544.CrossRefGoogle Scholar
[35]Schultens, J.Bridge numbers of torus knots. Math. Proc. Camb. Phil. Soc. 143 (2007), 621625.CrossRefGoogle Scholar
[36]Singer, J.Three-dimensional manifolds and their Heegaard diagrams. Trans. Amer. Math. Soc. 35 (1933), 88111.CrossRefGoogle Scholar
[37]Tsau, C. M.Incompressible surfaces in the knot manifolds of torus knots. Topology 33 (1994), 197201.CrossRefGoogle Scholar
[38]Tomova, M.Thin position for knots in a 3-manifold. J. Lond. Math. Soc. (2) 80 (2009), 8598.CrossRefGoogle Scholar
[39]Waldhausen, F.Heegaard–Zerlegungen der 3-Sphäre. Topology 7 (1968), 195203.CrossRefGoogle Scholar