Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T08:16:17.106Z Has data issue: false hasContentIssue false

Linear operators with closed range

Published online by Cambridge University Press:  24 October 2008

J. H. Webb
Affiliation:
University of Cape Town, South Africa

Extract

This paper continues the investigation begun in (6), and uses the definitions and notation of that paper.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Joichi, J. T.On operators with closed range. Proc. Amer. Math. Soc. 11 (1960), 8083.CrossRefGoogle Scholar
(2)Kaashoek, M. A.Closed linear operators on Banach spaces. Nederl. Akad. Wetensch. Proc. Ser. A. 27 (1965), 405414.CrossRefGoogle Scholar
(3)Kato, T.Perturbation theory for nullity, deficiency and other quantities of linear operators. J. Analyse Math. 6 (1958), 273322.CrossRefGoogle Scholar
(4)Komura, T.On linear topological spaces. Kumamoto J. Sci. Ser. A 5 (1962), 148157.Google Scholar
(5)Köthe, G.Topologische lineare Räume. (Springer, 1960.)CrossRefGoogle Scholar
(6)Webb, J. H.Perturbation theory for a linear operator. Proc. Cambridge Philos. Soc. 63 (1967), 1120.CrossRefGoogle Scholar