Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T13:09:17.273Z Has data issue: false hasContentIssue false

Lehmer points and visible points on affine varieties over finite fields

Published online by Cambridge University Press:  14 November 2013

KIT-HO MAK
Affiliation:
School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta, Georgia 30332, U.S.A. e-mail: [email protected]
ALEXANDRU ZAHARESCU
Affiliation:
Department of Mathematics, University of Illinois at Urbana-Champaign, 273 Altgeld Hall, 1409 W. Green Street, Urbana, Illinois 61801, U.S.A. e-mail: [email protected]

Abstract

Let V be an absolutely irreducible affine variety over $\mathbb{F}_p$. A Lehmer point on V is a point whose coordinates satisfy some prescribed congruence conditions, and a visible point is one whose coordinates are relatively prime. Asymptotic results for the number of Lehmer points and visible points on V are obtained, and the distribution of visible points into different congruence classes is investigated.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Alkan, E., Stan, F. and Zaharescu, A.Lehmer k-tuples. Proc. Amer. Math. Soc. 134 (10) (2006), 28072815.Google Scholar
[2]Bombieri, E.On exponential sums in finite fields. Amer. J. Math. 88 (1) (1966), 71105.Google Scholar
[3]Bombieri, E.On exponential sums in finite fields. II. Invent. Math. 47 (1) (1978), 2939.Google Scholar
[4]Bourgain, J., Cochrane, T., Paulhus, J. and Pinner, C.On the parity of kth powers modulo p. A generalization of a problem of Lehmer. Acta Arith. 147 (2) (2011), 173203.CrossRefGoogle Scholar
[5]Chan, T. H.Approximating reals by sums of two rationals. J. Number Theory 128 (5) (2008), 11821194.Google Scholar
[6]Chan, T. H.Approximating reals by sums of rationals. J. Number Theory 129 (2) (2009), 316324.Google Scholar
[7]Chan, T. H. and Shparlinski, I.Visible points on modular exponential curves. Bull. Pol. Acad. Sci. Math. 58 (1) (2010), 1722.Google Scholar
[8]Cilleruelo, J., Garaev, M., Ostafe, A. and Shparlinski, I.On the concentration of points of polynomial maps and applications. To appear in Math. Z. 272 (3-4) (2012), 825837.Google Scholar
[9]Cobeli, C. and Zaharescu, A.Generalization of a problem of Lehmer. Manuscripta Math. 104 (3) (2001), 301307.Google Scholar
[10]Deligne, P.La conjecture de Weil. I. Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273307.Google Scholar
[11]Deligne, P.La conjecture de Weil. II. Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137252.Google Scholar
[12]Fouvry, E.Consequences of a result of N. Katz and G. Laumon concerning trigonometric sums. Israel J. Math. 120 (part A) (2000), 8196.Google Scholar
[13]Fujiwara, M.Distribution of rational points on varieties over finite fields. Mathematika 35 (2) (1988), 155171.Google Scholar
[14]Guy, R.Unsolved Problems in Number Theory. Problem Books in Mathematics. (Springer-Verlag, New York, second edition, 1994). Unsolved Problems in Intuitive Mathematics, I.Google Scholar
[15]Katz, N.Estimates for “singular” exponential sums. Int. Math. Res. Not. 16 (1999), 875899.Google Scholar
[16]Laczkovich, M.Discrepancy estimates for sets with small boundary. Studia Sci. Math. Hungar. 30 (1-2) (1995), 105109.Google Scholar
[17]Lang, S. and Weil, A.Number of points of varieties in finite fields. Amer. J. Math. 76 (1954), 819827.CrossRefGoogle Scholar
[18]Luo, W.Rational points on complete intersections over Fp. Int. Math. Res. Not. 16 (1999), 901907.Google Scholar
[19]Shparlinski, I.Primitive points on modular hyperbola. Bull. Pol. Acad. Sci. Math. 54 (3-4) (2006), 193200.Google Scholar
[20]Shparlinski, I. and Voloch, J. F.Visible points on curves over finite fields. Bull. Pol. Acad. Sci. Math. 55 (3) (2007), 193199.Google Scholar
[21]Shparlinski, I. and Winterhof, A.Visible points on multidimensional modular hyperbolas. J. Number Theory 128 (9) (2008), 26952703.Google Scholar
[22]Shparlinski, I. E.On a generalisation of a Lehmer problem. Math. Z. 263 (3) (2009), 619631.CrossRefGoogle Scholar
[23]Shparlinski, I. E. and Skorobogatov, A. N.Exponential sums and rational points on complete intersections. Mathematika 37 (2) (1990), 201208.Google Scholar
[24]Skorobogatov, A. N.Exponential sums, the geometry of hyperplane sections, and some Diophantine problems. Israel J. Math. 80 (3) (1992), 359379.Google Scholar
[25]Weyl, H.On the Volume of Tubes. Amer. J. Math. 61 (2) (1939), 461472.CrossRefGoogle Scholar
[26]Zhang, W.On a problem of D. H. Lehmer and its generalization. Compositio Math. 86 (3) (1993), 307316.Google Scholar
[27]Zhang, W.On the difference between a D. H. Lehmer number and its inverse modulo q. Acta Arith. 68 (3) (1994), 255263.Google Scholar
[28]Zhang, W.A problem of D. H. Lehmer and its generalization. II. Compositio Math. 91 (1) (1994, 4756.Google Scholar