Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T07:27:01.580Z Has data issue: false hasContentIssue false

Lattice Banach spaces, order-isomorphic to l1

Published online by Cambridge University Press:  24 October 2008

Ioannis A. Polyrakis
Affiliation:
Department of Mathematics, National Technical University of Athens, Patision 42, Greece

Extract

It is known, (see [7], theorem 4 or [8], corollary II, 10.1), that a positive generated, ordered Banach space X is order-isomorphic to l1 iff X has a Schauder basis which generates its positive cone X+ and X+ has a bounded base.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bourain, J. and Talagrand, M.. Dans un espace de Banach reticulé solide, la propriété de Radon-Nikodým et celle de Krein-Milman sont équivalentes. Proc. Amer. Math,. Soc. 81 (1981), 9396.Google Scholar
[2] Diestel, J. and Uhl, J. J.. Vector Meaaurea (American Mathematical Society Surveys, 1977).Google Scholar
[3] Jameson, G. J. O.. Ordered Linear Spaces. Lecture Notes in Math. vol. 141 (Springer-Verlag, 1970).CrossRefGoogle Scholar
[4] Kendall, D.. Simplexes and vector lattices. J. London Math. Soc. 37 (1962), 365371.CrossRefGoogle Scholar
[5] Lindenstrauss, J.. On extreme points of l l. Israel J. Math. 4 (1966), 5961.Google Scholar
[6] Lindenstrauss, J.. Weakly compact sets-their topological properties and the Banach spaces they generate. Ann. of Math. Stud. 69 (1972), 235273.Google Scholar
[7] Mcarthur, C. W., Singer, I. and Levin, M.. On the cones associated to biorthogonal systems and bases in Banach spaces. Caned. J. Math. 21 (1969), 12061217.CrossRefGoogle Scholar
[8] Singer, I.. Bases in Basch Spaces (Springer-Verlag, 1970).Google Scholar
[9] Tsekrekos, P. C.. Some applications of L-constants and M-constants on Banach Lattices. J. London Math. Soc. (2), 18 (1979), 133139.Google Scholar