Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T19:33:19.862Z Has data issue: false hasContentIssue false

Invariance of coarse median spaces under relative hyperbolicity

Published online by Cambridge University Press:  06 September 2012

BRIAN H. BOWDITCH*
Affiliation:
Mathematics Institute, University of Warwick, Coventry, CV4 7AL. e-mail [email protected]

Abstract

We show that, for finitely generated groups, the property of admitting a coarse median structure is preserved under relative hyperbolicity.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[BaH]Bandelt, H.-J. and Hedlikova, J.Median algebras. Discrete Math. 45 (1983), 130.CrossRefGoogle Scholar
[BeM]Behrstock, J. A. and Minsky, Y. N. Centroids and the rapid decay property in mapping class groups. Preprint (2008).Google Scholar
[Bo1]Bowditch, B. H. Relatively hyperbolic groups. To appear in Internat. J. Algebra Comput.Google Scholar
[Bo2]Bowditch, B. H. Coarse median spaces and groups. To appear in Pacific J. Math.Google Scholar
[Bo3]Bowditch, B. H. Embedding median algebras in products of trees. Preprint, Warwick (2011).Google Scholar
[BrH]Bridson, M. and Haefliger, A.Metric spaces of non-positive curvature. Grundlehren der Math. Wiss. No. 319 (Springer 1999).Google Scholar
[F]Farb, B.Relatively hyperbolic groups. Geom. Funct. Anal. 8 (1998), 810840.CrossRefGoogle Scholar
[GhH]Ghys, E. and de la Harpe, P. (eds.). Sur les groupes hyperboliques d'après Mikhael Gromov. Prog. Math. 83 (Birkhäuser 1990).Google Scholar
[Gr]Gromov, M.Hyperbolic groups. In Essays in Group Theory. Math. Sci. Res. Inst. Publ. No. 8 (Springer 1987), 75263.CrossRefGoogle Scholar
[O]Osin, D. V.Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems. Mem. Amer. Math. Soc. 179 (2006).Google Scholar
[R]Roller, M. A.Poc-sets, median algebras and group actions, an extended study of Dunwoody's construction and Sageev's theorem. Habilitationschrift (Regensberg, 1998).Google Scholar