Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T02:54:21.348Z Has data issue: false hasContentIssue false

The integration of generalized hypergeometric functions

Published online by Cambridge University Press:  24 October 2008

G. E. Barr
Affiliation:
Applied Mathematics Division, Sandia Corporation, Albuquerque, New Mexico

Extract

Let the generalized hypergeometric function of one variable be denoted by

where (a)m is the Pochhammer symbol ((1, 3)).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Appell, P.et Kampé de Fériet, J., Fonctions hypergéométriques et hypersphériques (Gauther-Villars, Paris, 1926).Google Scholar
(2)Burchnall, J. L. and Chaundy, T. W.Expansions of Appell's double hypergeometric functions, II. Quart. J. Math. Oxford ser. 12 (1941), 112128.CrossRefGoogle Scholar
(3)Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G.Higher transcendental functions, vols. I, II (McGaw-Hill; New York, 1953).Google Scholar
(4)Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G.Tables of Integral Transforms, vol. I (McGraw-Hill; New York, 1954).Google Scholar
(5)Slater, L. J.Confluent hypergeometric functions (Cambridge, 1960).Google Scholar
(6)Srivastava, H. M.The integration of generalized hypergeometric functions. Proc. Cambridge Philos. Soc. 62 (1966), 761764.CrossRefGoogle Scholar