Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T00:55:33.250Z Has data issue: false hasContentIssue false

Homotopical algebra and triangulated categories

Published online by Cambridge University Press:  24 October 2008

Marco Grandis
Affiliation:
Dipartimento di Matematica, Universitià di Genova, Via L. B. Alberti 4, I-16132 Genova, Italy e-mail: [email protected]

Abstract

We study here the connections between the well known Puppe-Verdier notion of triangulated category and an abstract setting for homotopical algebra, based on homotopy kernels and cokernels, which was expounded by the author in [11, 13[.

We show that a right-homotopical category A (having well-behaved homotopy cokernels, i.e. mapping cones) has a sort of weak triangulated structure with regard to the suspension endofunctor σ, called σ-homotopical category. If A is homotopical and h-stable (in a sense related to the suspension-loop adjunction), this structure is also h-stable, i.e. satisfies ‘up to homotopy’ the axioms of Verdier[29[ for a triangulated category, excepting the octahedral one which depends on some further elementary conditions on the cone endofunctor of A. Every σ-homotopical category can be stabilized, by two universal procedures, respectively initial and terminal.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1[André, M.. Méthode simpliciale en algèbre homologique et algèbre commutative. Lecture Notes in Math. vol. 32 (Springer-Verlag, 1967).CrossRefGoogle Scholar
[2[Perez, J. Barja. Sucesiones exactas de ocho términos en homologìa de grupos. H 3(G, e). Alxebra no. 45 (Universidad de Santiago de Compostela, 1986).Google Scholar
[3[Barr, M. and Beck, J.. Homology and standard constructions; in Seminar on triples and categorical homology theory. Lecture Notes in Math. vol. 80 (Springer-Verlag, 1969), pp. 245335.CrossRefGoogle Scholar
[4[Baues, H. J.. Algebraic homotopy (Cambridge University Press, 1989).CrossRefGoogle Scholar
[5[Belinson, A. A., Bernstein, J. and Deligne, P.. Faisceaux pervers; in Analyse et topologie sur les espaces singuliers I, Luminy 1981, Astérisque no. 100 (Soc. Math. France, 1982), pp. 5171.Google Scholar
[6[Brown, E. H.. Cohomology theories. Ann. of Math. 75 (1962), 467484.CrossRefGoogle Scholar
[7[Brown, E. H.. Abstract homotopy theory. Trans. Amer. Math. Soc. 119 (1965), 7985.CrossRefGoogle Scholar
[8[Farjoun, E. Dror. Homotopy and homology of diagrams of spaces; in Algebraic Topology, Proceedings, Seattle 1985, Lecture Notes in Math. vol. 1286 (Springer-Verlag, 1987), pp. 93134.CrossRefGoogle Scholar
[9[Eilenberg, S. and Zilber, J. A.. Semi-simplicial complexes and singular homology. Ann. of Math. 51 (1951), 499513.CrossRefGoogle Scholar
[10[Freyd, P.. Stable homotopy; in Proceedings of the Conference on Categorical Algebra, La Jolla 1965 (Springer-Verlag, 1966), pp. 121176.CrossRefGoogle Scholar
[11[Grandis, M.. On the categorical foundations of homological and homotopical algebra. Cahiers Top. Géom. Diff. Catég. 33 (1992), 135175.Google Scholar
[12[Grandis, M.. A note on stability in homotopical algebra. Seminarberichte Fachb. Math. Fern Univ. Hagen 46 (1993), 8491.Google Scholar
[13[Grandis, M.. Homotopical algebra in homotopical categories. Appl. Categ. Struct, (to appear).Google Scholar
[14[Grandis, M.. Cubical monads and their symmetries. In Proceedings of the Eleventh International Conference on Topology. Trieste 1993, Rend. Ist. Mat. Univ. Trieste (to appear).Google Scholar
[15[Hartshorne, R.. Residues and duality. Lecture Notes in Math. vol. 20 (Springer-Verlag, 1966).CrossRefGoogle Scholar
[16[Heller, A.. Stable homotopy categories. Bull. Amer. Math. Soc. 74 (1968), 2863.CrossRefGoogle Scholar
[17[Huber, P. J.. Homotopy theories in general categories. Math. Ann. 144 (1961), 361385.CrossRefGoogle Scholar
[18[Huber, P. J.. Standard constructions in abelian categories. Math. Ann. 146 (1962), 321325.CrossRefGoogle Scholar
[19[Kamps, K. H.. Über einige formale Eigenschaften von Faserungen und h-Faserungen. Manuscripta Math. 3 (1970), 237255.CrossRefGoogle Scholar
[20[Kan, D. M.. Abstract homotopy II. Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 255258.CrossRefGoogle ScholarPubMed
[21[Neeman, A.. New axioms for triangulated categories. J. of Algebra 139 (1991), 221255.CrossRefGoogle Scholar
[22[Puppe, D.. Homotopiemengen und ihre induzierten Abbildungen I. Math. Z. 69 (1958), 299344.CrossRefGoogle Scholar
[23[Puppe, D.. On the formal structure of stable homotopy theory. In Colloquium on Algebraic Topology, Mat. Inst. (Aarhus Univ., 1962), 6571.Google Scholar
[24[Puppe, D.. Stabile Homotopietheorie I. Math. Ann. 169 (1967), 243274.CrossRefGoogle Scholar
[25[Rinehart, C.. Satellites and cohomology. J. of Algebra 12 (1969), 295329.CrossRefGoogle Scholar
[26[Robinson, A.. Spectral sheaves: a model category for stable homotopy theory. J. Pure Appl. Algebra 45 (1987), 171200.CrossRefGoogle Scholar
[27[Rodriguez, S.. Homotopía en categorías aditivas. Rev. Acad. Ciene. Zaragoza 43 (1988), 7792.Google Scholar
[28[Tierney, M. and Vogel, W.. Simplicial resolutions and derived functors. Math. Z. 111 (1969), 114.CrossRefGoogle Scholar
[29[Verdier, J. L.. Catégories dérivées; in Séminaire de Géométrie algébrique du Bois Marie SOA 4½, Cohomologie étale, Lecture Notes in Math. vol. 569 (Springer-Verlag, 1977), pp. 262311.CrossRefGoogle Scholar