Published online by Cambridge University Press: 24 October 2008
Let G be a monoid; that is to say, G is a set such that with each pair σ, τ of elements of G there is associated a further element of G called the ‘product’ of σ and τ and written as στ. In addition it is required that multiplication be associative and that G shall have a unit element. The so-called ‘Homology Theory’† associates with each left G-module A and each integer n (n ≥ 0) an additive Abelian group Hn (G, A), called the nth homology group of G with coefficients in A. It is natural to ask what can be said about G if all the homology groups of G after the pth vanish identically in A. In this paper we give a complete answer to this question in the case when G is an Abelian group. Before describing the main result, however, it will be convenient to define what we shall call the homology type of G. We write Hn(G, A) ≡ 0 if Hn(G, A) = 0 for all left G-modules A.