Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T00:42:15.880Z Has data issue: false hasContentIssue false

Geometric motivic Poincaré series of quasi-ordinary singularities

Published online by Cambridge University Press:  24 March 2010

HELENA COBO PABLOS
Affiliation:
Department of Mathematics, University of Leuven, Celestijnenlaan 200B, B-3001 Leuven-Heverlee, Belgium. e-mail: [email protected]
PEDRO D. GONZÁLEZ PÉREZ
Affiliation:
ICMAT. Depto. Álgebra. Universidad Complutense de Madrid, Plaza de las Ciencias 3, 28040, Madrid, Spain. e-mail: [email protected]

Abstract

The geometric motivic Poincaré series of a germ (S, 0) of complex algebraic variety takes into account the classes in the Grothendieck ring of the jets of arcs through (S, 0). Denef and Loeser proved that this series has a rational form. We give an explicit description of this invariant when (S, 0) is an irreducible germ of quasi-ordinary hypersurface singularity in terms of the Newton polyhedra of the logarithmic jacobian ideals. These ideals are determined by the characteristic monomials of a quasi-ordinary branch parametrizing (S, 0).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Abhyankar, S. S.On the ramification of algebraic functions. Amer. J. Math. 77 (1955), 575592.CrossRefGoogle Scholar
[2]Artal Bartolo, E., Cassou-Noguès, Pi., Luengo, I. and Hernández, A. MelleQuasi-ordinary power series and their zeta functions. Mem. Amer. Math. Soc. 178 (2005), no. 841, 185.Google Scholar
[3]Cobo Pablos, H.Arcs and motivic Poincaré series. Tesis Doctoral, Universidad Complutense de Madrid (2009).Google Scholar
[4]Cobo Pablos, H. and Pérez, P. D. González Motivic Poincaré series, toric singularities and logarithmic jacobian ideals. Preprint 2009.Google Scholar
[5]Denef, J. and Loeser, F.Germs of arcs on singular algebraic varieties and motivic integration. Invent. Math. 135, 1 (1999), 201232.CrossRefGoogle Scholar
[6]Denef, J. and Loeser, F. Geometry on arc spaces of algebraic varieties. European Congress of Mathematics, Vol. I (Barcelona, 2000) 327348. Progr. Math. 201 (2001).Google Scholar
[7]Denef, J. and Loeser, F.Definable sets, motives and p-adic integrals. J. Amer. Math. Soc. 14, 4 (2001), 429469.CrossRefGoogle Scholar
[8]Denef, J. and Loeser, F.Motivic integration, quotient singularities and the McKay correspondance. Compositio Math. 131 (2002), 267290.CrossRefGoogle Scholar
[9]Denef, J. and Loeser, F. On some rational generating series occuring in arithmetic geometry. In Geometric Aspects of Dwork Theory, edited by Adolphson, A., Baldassarri, F., Berthelot, P., Katz, N. and Loeser, F., vol. 1 (de Gruyter, (2004), 509526.CrossRefGoogle Scholar
[10]Ein, L. and Mustaţa, M. Jet Schemes and Singularities. Algebraic geometry (Seattle 2005). 505546. Proc. Sympos. Pure Math. 80, Part 2 (Amer. Math. Soc., 2009).Google Scholar
[11]Ewald, G.Combinatorial Convexity and Algebraic Geometry (Springer-Verlag, 1996).CrossRefGoogle Scholar
[12]Fulton, W.Introduction to Toric Varieties. Annals of Math. Studies 131, Princenton University Press (1993).CrossRefGoogle Scholar
[13]Gau, Y-N.Embedded Topological classification of quasi-ordinary singularities. Mem. Amer. Math. Soc. 388 (1988).Google Scholar
[14]Goldin, R. and Teissier, B. Resolving singularities of plane analytic branches with one toric morphism. Resolution of singularities (Obergurgl, 1997) 315340, Progr. Math. 181 (Birkhäuser, 2000).Google Scholar
[15]González Pérez, P. D.The semigroup of a quasi-ordinary hypersurface. J. Inst. Math. Jussieu 2 (3) (2003), 383399.CrossRefGoogle Scholar
[16]González Pérez, P. D.Toric embedded resolutions of quasi-ordinary hypersurface singularities. Ann. Inst. Fourier (Grenoble), 53 (6), (2003), 18191881.CrossRefGoogle Scholar
[17]González Pérez, P. D. Logarithmic jacobian ideals, quasi-ordinary hypersufaces and equisingularity, preprint 2009.Google Scholar
[18]González Pérez, P. D. and Gonzalez-Sprinberg, G.Analytical invariants of quasi-ordinary hypersurface singularities associated to divisorial valuations. Kodai Math. J. 27 (2004), no 2, 164173.Google Scholar
[19]González Pérez, P. D., McEwan, L. J. and Némethi, A. The zeta-function of a quasi-ordinary singularity. II. Topics in algebraic and noncommutative geometry (Luminy/Annapolis, MD, 2001), 109122, Contemp. Math. 324 (Amer. Math. Soc., 2003).Google Scholar
[20]González Pérez, P. D. and Hernando, F. Quasi-ordinary singularities, essential divisors and Poincaré series. J. London Math. Soc. (2009), doi: 10.1112/jlms/jdp014.CrossRefGoogle Scholar
[21]Greuel, G.-M., Lossen, C. and Shustin, E.Introduction to singularities and deformations. Springer Monographs in Mathematics (Springer, 2007).Google Scholar
[22]Greenberg, M. J.Rational points in Henselian discrete valuation rings. Inst. Hautes Études Sci. Publ. Math. No. 31 (1966), 5964.CrossRefGoogle Scholar
[23]Ishii, S.The arc space of a toric variety. J. Algebra, Volume 278 (2004), 666683.CrossRefGoogle Scholar
[24]Ishii, S.Arcs, valuations and the Nash map. J. Reine Angew. Math. 588 (2005), 7192.CrossRefGoogle Scholar
[25]Ishii, S.The local Nash problem on arc families of singularities. Ann. Inst. Fourier (Grenoble). 56 (2006), no. 4, 12071224.CrossRefGoogle Scholar
[26]Ishii, S.Jet schemes, arc spaces and the Nash problem. C. R. Math. Acad. Sci. Soc. R. Can. 29 (2007), no. 1, 121.Google Scholar
[27]Jung, H. W. E.Darstellung der Funktionen eines algebraischen Körpers zweier unabhaängigen Veränderlichen x, y in der Umgebung einer stelle x = a, y = b. J. Reine Angew. Math. 133 (1908), 289314.CrossRefGoogle Scholar
[28]Lejeune-Jalabert, M. and Reguera, A.The Denef-Loeser series for toric surface singularities. Proceedings of the International Conference on Algebraic Geometry and Singularities (Spanish) (Sevilla, 2001). Rev. Mat. Iberoamericana 19 (2003), no 2, 581612.CrossRefGoogle Scholar
[29]Lipman, J.Topological invariants of quasi-ordinary singularities. Mem. Amer. Math. Soc. 388 (1988).Google Scholar
[30]Lipman, J.Resolution of singularities (Obergurgl, 1997), 485505Progr. Math. 181 (Birkhäuser, 2000).Google Scholar
[31]Looijenga, E.Motivic measures, Séminaire Bourbaki, Exposé 874. Astérisque 276 (2002), 267297.Google Scholar
[32]McEwan, L. J. and Némethi, A. Some conjectures about quasi-ordinary singularities. Topics in algebraic and noncommutative geometry (Luminy/Annapolis, MD, 2001), 185193, Contemp. Math. 324 (Amer. Math. Soc., 2003).Google Scholar
[33]McEwan, L. J. and Némethi, A.The zeta function of a quasi-ordinary singularity. Compos. Math. 140 (2004), no. 3, 667682.CrossRefGoogle Scholar
[34]Nicaise, J.Motivic generating series for toric surface singularities. Math. Proc. Camb. Phil. Soc. 138 (2005), 383400.CrossRefGoogle Scholar
[35]Nicaise, J.Arcs and resolution of singularities. Manuscripta Math. 116 (2005), 297322.CrossRefGoogle Scholar
[36]Oda, T.Convex Bodies and Algebraic Geometry. Annals of Math. Studies 131 (Springer-Verlag, 1988).Google Scholar
[37]Popescu-Pampu, P.On the analytical invariance of the semigroups of a quasi-ordinary hypersurface singularity. Duke Math. J. 124 (2004), no. 1, 67104.CrossRefGoogle Scholar
[38]Popescu-Pampu, P.On higher dimensional Hirzebruch-Jung singularities. Rev. Mat. Complut. 18 (2005), no. 1, 209232.Google Scholar
[39]Teissier, B. Valuations, deformations, and toric geometry. Valuation theory and its applications, Vol. II (Saskatoon, SK, 1999), 361459, Fields Inst. Commun. 33 (Amer. Math. Soc., 2003).Google Scholar
[40]Rond, G.Séries de Poincaré motiviques d'un germe d'hypersurface irréductible quasi-ordinaire. Astérisque. 157 (2008), 371396.Google Scholar
[41]Veys, W. Arc spaces, motivic integration and stringy invariants, Advanced Studies in Pure Mathematics 43, Proceedings of “Singularity Theory and its applications, Sapporo (Japan), 16–25 September 2003” (2006), 529–572.Google Scholar