Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T19:19:07.667Z Has data issue: false hasContentIssue false

Generalized maximum principles and the rigidity of complete spacelike hypersurfaces

Published online by Cambridge University Press:  16 August 2012

FERNANDA CAMARGO
Affiliation:
Departamento de Matemática, Universidade Federal do Ceará, Fortaleza, Ceará, 60455-760, Brazil. e-mail: [email protected]
ANTONIO CAMINHA
Affiliation:
Departamento de Matemática, Universidade Federal do Ceará, Fortaleza, Ceará, 60455-760, Brazil. e-mail: [email protected]
HENRIQUE DE LIMA
Affiliation:
Departamento de Matemática e Estatística, Universidade Federal de Campina Grande, 58109-970 Campina Grande, Paraíba, Brazil. e-mail: [email protected]
ULISSES PARENTE
Affiliation:
Faculdade de Educação, Ciências e Letras do Sertão Central Universidade Estadual do Ceará, Quixadá, Ceará, 63900-000, Brazil. e-mail: [email protected]

Abstract

In this paper, we apply several forms of generalized maximum principles to the study of the uniqueness of complete, non-compact spacelike hypersurfaces immersed in a class of Lorentzian warped products obeying a suitable convergence condition.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Aiyama, R.On the Gauss map of complete space-like hypersurfaces of constant mean curvature in Minkowski space. Tsukuba J. Math. 16 (1992), 353361.CrossRefGoogle Scholar
[2]Albujer, A. L. and Alías, L. J.Spacelike hypersurfaces with constant mean curvature in the steady state space. Proc. Amer. Math. Soc. 137 (2009), 711721.CrossRefGoogle Scholar
[3]Albujer, A. L., Camargo, F. E. C. and de Lima, H. F.Complete spacelike hypersurfaces in a Robertson–Walker spacetime. Math. Proc. Camb. Phil. Soc. 151 (2011), 271282.CrossRefGoogle Scholar
[4]Alías, L. J., Brasil, A. Jr and Colares, A. G.Integral formulae for spacelike hypersurfaces in conformally stationary spacetimes and applications. Proc. Edinburgh Math. Soc. 46 (2003), 465488.CrossRefGoogle Scholar
[5]Alías, L. J. and Colares, A. G.Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson–Walker spacetimes. Math. Proc. Camb. Phil. Soc. 143 (2007), 703729.CrossRefGoogle Scholar
[6]Alías, L. J., Impera, D. and Rigoli, M.spacelike hypersurfaces of constant higher order mean curvature in generalized Robertson–Walker spacetimes. Math. Proc. Camb. Phil. Soc. 152 (2012), 365383.CrossRefGoogle Scholar
[7]Alías, L. J., Impera, D. and Rigoli, M. Hypersurfaces of constant higher order mean curvature in warped products. To appear in Trans. Amer. Math. Soc.Google Scholar
[8]Alías, L. J., Romero, A. and Sánchez, M.Uniqueness of complete spacelike hypersurfaces of constant mean curvature in Generalized Robertson–Walker spacetimes. Gen. Relativity Gravitation 27 (1995), 7184.CrossRefGoogle Scholar
[9]Caballero, M., Romero, A. and Rubio, R. M.Constant mean curvature spacelike surfaces in three–dimensional generalized Robertson–Walker spacetimes. Lett. Math. Phys. 93 (2010), 85105.CrossRefGoogle Scholar
[10]Caballero, M., Romero, A. and Rubio, R. M.Uniqueness of maximal surfaces in generalized Robertson–Walker spacetimes and Calabi–Bernstein type problems. J. Geom. Phys. 60 (2010), 394402.CrossRefGoogle Scholar
[11]Caballero, M., Romero, A. and Rubio, R. M.Complete cmc spacelike surfaces with bounded hyperbolic angle in generalized Robertson–Walker spacetimes. Int. J. Geom. Meth. Mod. Phys. 7 (2010), 961978.CrossRefGoogle Scholar
[12]Calabi, E.Examples of Bernstein problems for some nonlinear equations. Proc. Sympos. Pure Math. 15 (1970), 223230.CrossRefGoogle Scholar
[13]Camargo, F. E. C., Caminha, A. and de Lima, H. F.Bernstein-type theorems in semi-Riemannian warped products. Proc. Amer. Math. Soc. 139 (2011), 18411850.CrossRefGoogle Scholar
[14]Camargo, F. E. C., Chaves, R. M. B. and de Sousa, L. A. M. JrRigidity theorems for complete spacelike hypersurfaces with constant scalar curvature in de Sitter space. Diff. Geom. Appl. 26 (2008), 592?599.CrossRefGoogle Scholar
[15]Camargo, F. E. C. and de Lima, H. F.New characterizations of totally geodesic hypersurfaces in the anti-de Sitter space ℍ1n + 1. J. of Geom. and Physics 60 (2010), 13261332.CrossRefGoogle Scholar
[16]Caminha, A.A rigidity theorem for complete CMC hypersurfaces in Lorentz manifolds. Diff. Geom. Appl. 24 (2006), 652659.CrossRefGoogle Scholar
[17]Caminha, A. and de Lima, H. F.Complete spacelike hypersurfaces in conformally stationary Lorentz manifolds. Gen. Relativity Gravitation 41 (2009), 173189.CrossRefGoogle Scholar
[18]Caminha, A. and de Lima, H. F.Complete vertical graph with constant mean curvature in semi-Riemannian warped products. Bull. of the Belgian Math. Soc. 16 (2009), 91105.Google Scholar
[19]Caminha, A., Sousa, P. and Camargo, F. E. C.Complete foliations of space forms by hypersurfaces. Bull. Braz. Math. Soc. 41 (3) (2010), 339353.CrossRefGoogle Scholar
[20]Cheng, S. Y. and Yau, S. T.Maximal spacelike hypersurfaces in the Lorentz–Minkowski space. Ann. of Math. 104 (1976), 407419.CrossRefGoogle Scholar
[21]Cheng, S. Y. and Yau, S. T.Hypersurfaces with constant scalar curvature. Math. Ann. 225 (1977), 195204.CrossRefGoogle Scholar
[22]Garding, L.An inequality for hyperbolic polynomials. J. Math. Mech. 8 (1959), 957965.Google Scholar
[23]Hardy, G., Littlewood, J. E. and Pólya, G.Inequalities. Cambridge Mathematical Library (Cambridge, 1989).Google Scholar
[24]Montiel, S.An integral inequality for compact spacelike hypersurfaces in de Sitter space and applications to the case of constant mean curvature. Indiana Univ. Math. J. 37 (1988), 909917.CrossRefGoogle Scholar
[25]Montiel, S.Uniqueness of spacelike hypersurfaces of constant mean curvature in foliated spacetimes. Math. Ann. 314 (1999), 529553.CrossRefGoogle Scholar
[26]Montiel, S.Complete non-compact spacelike hypersurfaces of constant mean curvature in de Sitter space. J. Math. Soc. Japan 55 (2003), 915938.CrossRefGoogle Scholar
[27]Montiel, S. and Ros, A.Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures. in Differential Geometry (ed. Lawson, B. and Tenenblat, K.), pp. 279296 (Longman, 1991).Google Scholar
[28]Omori, H.Isometric immersions of Riemannian manifolds. J. Math. Soc. Japan 19 (1967), 205214.CrossRefGoogle Scholar
[29]O'Neill, B. Semi-Riemannian Geometry with Applications to Relativity. (Academic Press, London, 1983).Google Scholar
[30]Romero, A. and Rubio, R. M.On the mean curvature of spacelike surfaces in certain three-dimensional Robertson–Walker spacetimes and Calabi–Bernstein's type problems. Ann. Global Anal. Geom. 37 (2010), 2131.CrossRefGoogle Scholar
[31]Rosenberg, H.Hypersurfaces of constant curvature in space forms. Bull. Sci. Math. 117 (1993), 217239.Google Scholar
[32]Xin, Y. L.On the Gauss image of a spacelike hypersurface with constant mean curvature in Minkowski space. Comment. Math. Helv. 66 (1991), 590598.CrossRefGoogle Scholar
[33]Yau, S. T.Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math. 28 (1975), 201228.CrossRefGoogle Scholar
[34]Yau, S. T.Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry. Indiana Univ. Math. J. 25 (1976), 659670.CrossRefGoogle Scholar