Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T19:25:29.028Z Has data issue: false hasContentIssue false

The Ganea conjecture in proper homotopy via exterior homotopy theory

Published online by Cambridge University Press:  24 March 2010

JOSE M. GARCÍA–CALCINES
Affiliation:
Departamento de Matemática Fundamental, Universidad de La Laguna, 38271 Islas Canarias, Spain. e-mail: [email protected], [email protected]
PEDRO R. GARCÍA–DÍAZ
Affiliation:
Departamento de Matemática Fundamental, Universidad de La Laguna, 38271 Islas Canarias, Spain. e-mail: [email protected], [email protected]
ANICETO MURILLO MAS
Affiliation:
Departamento of Álgebra, Geometría y Topología, Universidad of Málaga, Ap. 59, 29080 Málaga, Spain. e-mail: [email protected]

Abstract

In this article we provide sufficient conditions on a space X to verify Ganea conjecture with respect to exterior and proper Lusternik–Schnirelmann category. For this aim we previously develop an exterior version of the Whitehead, cellular approximation, CW-approximation and Blakers–Massey theorems within a homotopy theory of exterior CW-complexes and study their corresponding analogues and consequences in the proper setting.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ayala, R., Domínguez, E. and Quintero, A.A theoretical framework for proper homotopy theory. Math. Proc. Camb. Phil. Soc. 107 (1990), 475482.CrossRefGoogle Scholar
[2]Ayala, R., Domínguez, E., Márquez, A. and Quintero, A.Lusternik–Schnirelmann invariants in proper homotopy theory. Pacific J. Math. 153 (1992), 201215.CrossRefGoogle Scholar
[3]Ayala, R. and Quintero, A.On the Ganea strong category in proper homotopy. Proc. Edinburgh Math. Soc. 41 (1998), 247263.CrossRefGoogle Scholar
[4]Baues, H. J., Foundations of proper homotopy theory. Max-Planck Institut fr Mathematik, preprint (1992).Google Scholar
[5]Baues, H. J. and Quintero, A.Infinite homotopy theory. K-Monographs in Mathematics 6, (Kluwer Academic Publishers, 2001).CrossRefGoogle Scholar
[6]Baues, H. J. and Quintero, A.On the locally finite chain algebra of a proper homotopy type. Bull. Belg. Math. Soc. 3:(2) (1996), 161175.Google Scholar
[7]Brown, E. M.On the proper homotopy type of simplicial complexes. Lect. Notes in Math. 375 (1975).Google Scholar
[8]Cárdenas, M., Lasheras, F. F. and Quintero, A.Minimal covers of open manifolds with half-spaces and the proper L-S category of product spaces. Bull. Belgian Math. Soc. 9 (2002), 419431.Google Scholar
[9]Cárdenas, M., Lasheras, F. F., Muro, F. and Quintero, A.Proper L-S category, fundamental pro-groups and 2-dimensional proper co-H-spaces. Topology Appl. 153:(4) (2005), 580604.Google Scholar
[10]Cárdenas, M., Muro, F. and Quintero, A.The proper L-S category of Whitehead manifolds. Topology Appl. 153:4, (2005), 557579.CrossRefGoogle Scholar
[11]Cornea, O., Lupton, G., Oprea, J. and Tanré, D.Lusternik–Schnirelmann category. Math. Surveys and Monogr. 103, (Amer. Math. Soc., 2003).CrossRefGoogle Scholar
[12]Doeraene, J. P.L. S.-category in a model category. J. Pure Appl. Alg. 84 (1993), 215261.CrossRefGoogle Scholar
[13]Edwards, D. and Hastings, H.Čech and Steenrod homotopy theories with applications to Geometric Topology. Lect. Notes Math. 542 (Springer, 1976).CrossRefGoogle Scholar
[14]Extremiana, J. I., Hernández, L. J. and Rivas, M. T.Postnikov factorizations at infinity. Topology Appl. 153 (2005), 370393.CrossRefGoogle Scholar
[15]Extremiana, J. I. and Hernández, L. J. y Rivas, M. T.Proper CW-complexes: a category for the study of proper homotopy. Collect. Math., 39:(2), (1988), 149179.Google Scholar
[16]Farrell, F. T., Taylor, L. R. y Wagoner, J. B.The Whitehead theorem in the proper category. Compositio Math., 27 (1973),1–23.Google Scholar
[17]García–Calcines, J. M., García–Díaz, P. R. and Murillo–Mas, A.A Whitehead-Ganea approach for proper Lusternik–Schnirelmann category. Math. Proc. Camb. Phil. Soc. 142:(3) (2007), 439457.CrossRefGoogle Scholar
[18]García–Calcines, J. M., García–Pinillos, M. and Hernández–Paricio, L. J.A closed model category for proper homotopy and shape theories. Bull. Austral. Math. Soc. 57:(2) (1998), 221242.CrossRefGoogle Scholar
[19]García–Calcines, J. M., García–Pinillos, M. and Hernández–Paricio, L. J.Closed simplicial model structures for exterior and proper homotopy theory. Appl. Categ. Structures 12 (3) (2004), 225243.CrossRefGoogle Scholar
[20]García–Díaz, P. R. Caracterizaciones de Whitehead y Ganea para la categoría de Lusternik-Schnirelmann propia. Tesis (Spanish), (2007).Google Scholar
[21]Gray, B.Homotopy Theory: An introduction to algebraic topology. Pure Appl. Math. 64 (1975).Google Scholar
[22]Hernández–Paricio, L. J.Application of simplicial M-sets to proper homotopy and strong shape theories. Trans. Amer. Math. Soc. 347:(2) (1995), 363409.CrossRefGoogle Scholar
[23]Hernández–Paricio, L. J.Functorial and algebraic properties of Brown's functor. Theory Appl. Categ. 1:(2) (1995), 1053.Google Scholar
[24]Iwase, N.Ganea conjecture on Lusternik-Schnirelmann category. Bull. London Math. Soc. 30:(6) (1998), 623634.CrossRefGoogle Scholar
[25]Strøm, A.The homotopy category is a homotopy category. Arch. Math. 23 (1972), 435441.CrossRefGoogle Scholar
[26]Vandembroucq, L.Suspension of Ganea fibrations and a Hopf invariant. Topology Appl. 105 (2000), 187200.CrossRefGoogle Scholar