Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T09:56:36.231Z Has data issue: false hasContentIssue false

Framed cobordisms in real algebraic geometry

Published online by Cambridge University Press:  24 October 2008

Wojciech Kucharz
Affiliation:
Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131, U.S.A.

Extract

Akbulut and King [3, 4] have obtained several interesting results investigating the effects on homology of real algebraic varieties of the blowing-up construction. Here we apply this technique to study the behaviour of homotopy classes.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Akbulut, S. and King., H.The topology of real algebraic sets with isolated singularities. Ann. of Math. 113 (1981), 425446.CrossRefGoogle Scholar
[2]Akbulut, S. and King., H.The topology of real algebraic sets. Enseign. Math. 29 (1983), 221261.Google Scholar
[3]Akbulut, S. and King., H.Submanifolds and homology of nonsingular real algebraic varieties. Am. J. Math. 107 (1985), 4583.CrossRefGoogle Scholar
[4]Akbulut, S. and King., H.A resolution theorem for homology cycles of real algebraic varieties. Invent. Math. 79 (1985), 589601.CrossRefGoogle Scholar
[5]Bochnak, J., Coste, M. and Roy., M. F.Géométrie Algébrique Réelle. Ergebnisse der Math. Springer (to appear).Google Scholar
[6]Bochnak, J. and Kucharz., W.Realization of homotopy classes by algebraic mappings. University of New Mexico, preprint (1985).Google Scholar
[7]Bochnak, J. and Kucharz., W.Algebraic approximation of mappings into spheres. Mich. Math. J., to appear.Google Scholar
[8]Hironaka., H.Resolution of singularities of an algebraic variety over a field of characteristic zero: I, II. Ann. of Math. 79 (1964), 109326.CrossRefGoogle Scholar
[9]Loday., J. L.Applications algébriques du tore dans la sphere et de Sp × Sp dans S p+q. Lecture Notes in Math. vol. 342 (Springer, 1973), 7991.Google Scholar
[10]Lojasiewicz., S.Sur la problème de la division. Studia Math. 8 (1959), 87136.CrossRefGoogle Scholar
[11]Milnor., J.Topology from the Differentiable Viewpoint (University of Virginia Press, 1966).Google Scholar
[12]Serre., J. P.Faisceaux algébriques cohérents. Ann. of Math. 61 (1956), 197278.CrossRefGoogle Scholar
[13]Silhol., R.Géométrie algébrique sur un corps non algébriquement clos. Commun. Alg. 6 (1978), 11311155.CrossRefGoogle Scholar
[14]Wood., R.Polynomial maps from spheres to spheres. Invent. Math. 5 (1968), 163168.CrossRefGoogle Scholar