Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T16:46:15.477Z Has data issue: false hasContentIssue false

The fifth moment of Hecke L-functions in the weight aspect

Published online by Cambridge University Press:  14 January 2019

RIZWANUR KHAN*
Affiliation:
Department of Mathematics, University of Mississippi, University, MS 38677-1848, U.S.A.
*

Abstract

We prove an upper bound for the fifth moment of Hecke L-functions associated to holomorphic Hecke cusp forms of full level and weight k in a dyadic interval Kk ≤2K, as K → ∞. The bound is sharp on Selberg’s eigenvalue conjecture.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blomer, V., Harcos, G. and Michel, P.. Bounds for modular L-functions in the level aspect, Ann. Sci. École Norm. Sup. (4) 40 (2007), no. 5, 697740.CrossRefGoogle Scholar
Blomer, V. and Khan, R.. Twisted moments of L-functions and spectral reciprocity, preprint, arXiv:1706.01245.Google Scholar
Blomer, V. and Khan, R.. Uniform subconvexity and symmetry breaking reciprocity, preprint, arXiv:1804.01602.Google Scholar
Blomer, V., Khan, R. and Young, M.. Distribution of mass of holomorphic cusp forms. Duke Math. J. 162 (2013), no. 14, 26092644.CrossRefGoogle Scholar
Blomer, V. and Milićević, D.. The second moment of twisted modular L-functions. Geom. Funct. Anal. 25 (2015), no. 2, 453516.CrossRefGoogle Scholar
Buttcane, J. and Khan, R.. On the fourth moment of Hecke Maass forms and the random wave conjecture. Compos. Math. 153 (2017), no. 7, 14791511.CrossRefGoogle Scholar
Deshouillers, J. M. and Iwaniec, H.. Kloosterman sums and Fourier coefficients of cusp forms. Invent. Math. 70 (1982), no. 2, 219288.CrossRefGoogle Scholar
Duke, W., Friedlander, J. B. and Iwaniec, H.. Bounds for automorphic L-functions. II. Invent. Math. 115 (1994), no. 2, 219239.CrossRefGoogle Scholar
Hoffstein, J. and Lockhart, P.. Coefficients of Maass forms and the Siegel zero. Ann. of Math. Sup. (2) 140 (1994), no. 1, 161181. With an appendix by Goldfeld, D., Hoffstein, J. and Lieman, D..CrossRefGoogle Scholar
Ivić, A.. On sums of Hecke series in short intervals. J. Théor. Nombres Bordeaux 13 (2001), no. 2, 453468.CrossRefGoogle Scholar
Iwaniec, H. and Kowalski, E.. Analytic Number Theory. American Mathematical Society Colloquium Publications, vol. 53 (American Mathematical Society, Providence, 2004).Google Scholar
Iwaniec, H., Luo, W. and Sarnak, P.. Low lying zeros of families of L-functions. Inst. Hautes Études Sci. Publ. Math. 91 (2000), no. 1, 55131 (2001).CrossRefGoogle Scholar
Jutila, M.. The fourth moment of central values of Hecke series, Number Theory (Turku, 1999) (de Gruyter, 2001), pp. 167177.CrossRefGoogle Scholar
Jutila, M.. The twelfth moment of central values of Hecke series. J. Number Theory 108 (2004), no. 1, 157168.CrossRefGoogle Scholar
Kim, H. H.. Functoriality for the exterior square of GL4 and the symmetric fourth of GL2. J. Amer. Math. Soc. 16 (2003), no. 1, 139183. With appendix 1 by Ramakrishnan, D. and appendix 2 by Kim, H. and Sarnak, P..CrossRefGoogle Scholar
Kiral, E. M. and Young, M. P.. The fifth moment of modular l-functions. preprint, arXiv:1701.07507.Google Scholar
Kohnen, W. and Zagier, D.. Values of L-series of modular forms at the center of the critical strip. Invent. Math. 64 (1981), no. 2, 175198.CrossRefGoogle Scholar
Li, X.. Bounds for GL(3) × GL(2) L-functions and GL(3) L-functions. Ann. of Math. Sup. (2) 173 (2011), no. 1, 301336.CrossRefGoogle Scholar
Peng, Z.. Zeros and central values of automorphic L-functions. ProQuest LLC, Ann Arbor, MI.Google Scholar