Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T01:59:20.274Z Has data issue: false hasContentIssue false

Explicit generators for the relation module in the example of Gruenberg–Linnell

Published online by Cambridge University Press:  07 March 2016

W. H. MANNAN*
Affiliation:
School of Computing, Engineering and Mathematics, University of Brighton, Cockroft Building, Lewes Road, Brighton BN2 4GJ. e-mail: [email protected]

Abstract

Gruenberg and Linnell showed that the standard relation module of a free product of n groups of the form Cr × $\mathbb{Z}$ could be generated by just n + 1 generators, raising the possibility of a relation gap. We explicitly give such a set of generators.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bridson, M. R. and Tweedale, M. Deficiency and abelianised deficiency of some virtually free groups. Math. Proc. Camb. Phil. Soc. 143 (2007), 257264.CrossRefGoogle Scholar
[2] Edwards, T. Generalised Swan modules and the D2 problem. Algebr. Geom. Topol. 6 (2006), 7189.Google Scholar
[3] Gruenberg, K. and Linnell, P. Generation gaps and abelianized defects of free products. J. Group Theory 11 (5) (2008), 587608.CrossRefGoogle Scholar
[4] Harlander, J. Some aspects of efficiency. In Groups–Korea'98, Pusan (de Gruyter, 2000), pp. 165–180.Google Scholar
[5] Hog-Angeloni, C. Beiträge zum (einfachen) Homotopietyp bei freien Produkten und anderen gruppentheoretischen Konstruktionen. PhD. thesis. Johann Wolfgang Goethe–Universität Frankfurt am Main (1988).Google Scholar
[6] Johnson, F.E.A. Stable Modules and the D(2) Problem. Lecture Note Series 301 (LMS, 2003).CrossRefGoogle Scholar
[7] Mannan, W.H. Realizing algebraic 2-complexes by cell complexes. Math. Proc. Camb. Phil. Soc. 14 (2009), 671673.CrossRefGoogle Scholar
[8] Mannan, W.H. Quillen's plus construction and the D(2) problem. Algebr. Geom. Topol. 9 (2009), 13991411.CrossRefGoogle Scholar