Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T23:12:46.519Z Has data issue: false hasContentIssue false

Enumerating coloured partitions in 2 and 3 dimensions

Published online by Cambridge University Press:  19 July 2019

BEN DAVISON
Affiliation:
School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, KING’s Buildings, Edinburgh, EH9 3FD. e-mail: [email protected]
JARED ONGARO
Affiliation:
School of Mathematics, University of Nairobi, Chiromo Campus, P.O. Box 30197, 00100 Nairobi, Kenya. e-mail: [email protected]
BALÁZS SZENDRŐI
Affiliation:
Mathematical Institute, University of Oxford, Andrews Wiles Building, Woodstock Road, Oxford, OX2 699. e-mail: [email protected]

Abstract

We study generating functions of ordinary and plane partitions coloured by the action of a finite subgroup of the corresponding special linear group. After reviewing known results for the case of ordinary partitions, we formulate a conjecture concerning a basic factorisation property of the generating function of coloured plane partitions that can be thought of as an orbifold analogue of a conjecture of Maulik et al., now a theorem, in three-dimensional Donaldson–Thomas theory. We study natural quantisations of the generating functions arising from geometry, discuss a quantised version of our conjecture, and prove a positivity result for the quantised coloured plane partition function under a geometric assumption.

MSC classification

Type
Research Article
Copyright
© Cambridge Philosophical Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, G. E.. Theheory of partitions. Encyclopedia Math. Appl. 2 (Addison-Wesley, Reading, Mass., 1976).Google Scholar
Batyrev, V. V.. Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs. J. Eur. Math. Soc. 1 (1999), 533.CrossRefGoogle Scholar
Bejleri, D. and Zaimi, G.. The topology of equivariant Hilbert schemes, arXiv:1512.05774.Google Scholar
Behrend, K.. Donaldson-Thomas type invariants via microlocal geometry. Ann. of Math. (2) 170 (2009), 13071338.CrossRefGoogle Scholar
Behrend, K. and Fantechi, B.. Symmetric obstruction theories and Hilbert schemes of points on threefolds, Algebra Number Theory 2 (2008), 313345.CrossRefGoogle Scholar
Benini, F., Benvenuti, S. and Tachikawa, Y.. Webs of five-branes and N = 2 superconformal field theories. J. High Energy Phys. 9 (2009), 052.CrossRefGoogle Scholar
Bridgeland, T.. Equivalences of triangulated categories and Fourier–Mukai transforms. Bull. London. Math. Soc 131(1) (1999), 2534.CrossRefGoogle Scholar
Bridgeland, T., King, A. and Reid, M.. The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001), 535554.CrossRefGoogle Scholar
Cox, D., Little, J. and Schenck, H.. Toric varieties. Graduate studies in Math. AMS, 124 (2011).Google Scholar
Davison, B.. The critical CoHA of a quiver with potential. Quart. J. Math. 68(2) (2017), 635703.CrossRefGoogle Scholar
Davison, B.. Purity of critical cohomology and Kac’s conjecture. Math. Res. Lett. 25(2) (2018), 469488.CrossRefGoogle Scholar
Davison, B.. The integrality conjecture and the cohomology of preprojective stacks. arXiv:1602.02110Google Scholar
Davison, B. and Meinhardt, S.. Cohomological Donaldson–Thomas theory of a quiver with potential and quantum enveloping algebras. arXiv:1601.02479.Google Scholar
Engel, J. and Reineke, M.. Smooth models of quiver moduli. Math. Z. 262(4) (2009), 817848.CrossRefGoogle Scholar
Fujii, S. and Minabe, S.. A combinatorial study on quiver varieties. SIGMA Symmetry Integrability Geom. Methods Appl. 13 (2017), 052.Google Scholar
Ginzburg, V.. Calabi–Yau algebras. arXiv:math/0612139.Google Scholar
Garvan, F., Kim, D. and Stanton, D.. Cranks and t-cores. Invent. Math. 101 (1990), 117.CrossRefGoogle Scholar
Gyenge, Á., Némethi, A. and Szendröi, B.. Euler characteristics of Hilbert schemes of points on simple surface singularities. European J. Math. 4 (2018), 439524.CrossRefGoogle Scholar
Herschend, M. and Iyama, O.. Selfinjective quivers with potential and 2-representation-finite algebras. Composition Math. 147 (2011), 18851920.CrossRefGoogle Scholar
James, G. and Kerber, A.. The representation theory of the symmetric group. Encyclopedia Math. Appl. 16 (Addison-Wesley, Reading, Mass., 1981).Google Scholar
Hong, J. and Kang, S.-J.. Introduction to quantum groups and crystal bases. Amer. Math. Soc. 42 (2002).Google Scholar
Kwon, J.-H.. Affine crystal graphs and two-colored partitions. Letters in Mathematical Physics 75 (2006), 171186.CrossRefGoogle Scholar
Katz, S., Morrison, D. and Plesser, R.. Enhanced gauge symmetry in Type II string theory. Nuclear Phys. B 477 (1996), 105140.CrossRefGoogle Scholar
King, A. D.. Moduli of representations of finite-dimensional algebras. Quart. J. Math. 45 (1994), 515530.CrossRefGoogle Scholar
Kontsevich, M. and Soibelman, Y.. Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants. Comm. Num. Th & Phys. 5(2) (2011), 231352CrossRefGoogle Scholar
Maulik, D., Nekrasov, N., Okounkov, A. and Pandharipande, R.. Gromov–Witten theory and Donaldson–Thomas theory I. Composition Math. 142 (2006), 12631285.CrossRefGoogle Scholar
Mozgovoy, S.. Motivic Donaldson–Thomas invariants and McKay correspondence. arXiv:1107.6044.Google Scholar
Mozgovoy, S. and Reineke, M.. On the noncommutative Donaldson–Thomas invariants arising from brane tilings. Adv. Math. 223 (2010), 15211544.CrossRefGoogle Scholar
Nakajima, H. and Ito, Y.. McKay correspondence and Hilbert schemes in dimension three. Topology 39 (2000), 11551191.Google Scholar
Nakamura, I.. Hilbert schemes of abelian group orbits, J. Algebraic Geom. 10 (2001), 757779.Google Scholar
Reid, M.. La correspondance de McKay, Séminaire Bourbaki, Astérisque 276 (2002), 5372.Google Scholar
Young, B.. Generating functions for colored 3D Young diagrams and the Donaldson–Thomas invariants of orbifolds, with an appendix by Bryan, J.. Duke Math. J. 152 (2010), 115153.CrossRefGoogle Scholar