Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T01:25:23.120Z Has data issue: false hasContentIssue false

Duality for base-changing morphisms of vector bundles, modules, Lie algebroids and Poisson structures

Published online by Cambridge University Press:  24 October 2008

Philip J. Higgins
Affiliation:
Department of Mathematical Sciences, University of Durham, Durham DH1 3LE
Kirill C. H. Mackenzie
Affiliation:
Department of Pure Mathematics, University of Sheffield, Sheffield S3 7RH

Abstract

The main result of this paper is an extension to Poisson bundles [4] and Lie algebroids of the classical result that a linear map of Lie algebras is a morphism of Lie algebras if and only if its dual is a Poisson morphism. In formulating this extension we introduce a second class of structural maps for vector bundles, which we call comorphisms, alongside the standard morphisms, and we further show that this concept of comorphism, in conjunction with a corresponding concept for modules, allows one to extend to arbitrary base-changing morphisms of arbitrary vector bundles the familiar duality and section functors which are normally denned only in the base-preserving case.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Abraham, R. and Marsden, J.. Foundations of Mechanics. (Addison-Wesley, second edition, 1985).Google Scholar
[2]Almeida, R. and Kumpera, A.. Structure produit dans la catégorie des algèbroids de Lie. An. Acad. Brasil Ciênc, 53 (1981), 247250.Google Scholar
[3]Coste, A., Dazord, P. and Weinstein, A.. Groupoïdes symplectiques. In Publications du Département de Mathématiques de l'université de Lyon, I (Number 2/A-1987), pp. 1–65.Google Scholar
[4]Courant, T. J.. Dirac manifolds. Trans. Amer. Math. Soc. 319 (1990), 631661.CrossRefGoogle Scholar
[5]Dieudonné, J.. Treatise on Analysis, vol. 3. Translated by Macdonald, I. G.. (Academic Press, 1972).Google Scholar
[6]Fel'dman, G. L.. Global dimension of rings of differential operators. Trans. Moscow Math. Soc. 41 (1) (1982), 123147.Google Scholar
[7]Greub, W., Halperin, S. and Vanstone, R.. Connections, Curvature and Cohomology, vol. 1 (Academic Press, 1972).Google Scholar
[8]Higgins, P. J. and Mackenzie, K. C. H.. Algebraic constructions in the category of Lie algebroids. J. Algebra 129 (1990), 194230.CrossRefGoogle Scholar
[9]Hilton, P. J. and Stammbach, U.. A course in homological algebra (Springer-Verlag, 1971).CrossRefGoogle Scholar
[10]Huebschmann, J.. Poisson cohomology and quantization. J. Reine Angew. Math. 408 (1990), 57113.Google Scholar
[11]Mackenzie, K. C. H.. Lie groupoids and Lie algebroids in differential geometry. London Math. Soc. Lecture Note Ser. 124 (Cambridge University Press, 1987).CrossRefGoogle Scholar
[12]Mackenzie, K. C. H.. Generalized Lie theories: Lie algebroids and Lie pseudo-algebras as algebraic invariants in differential geometry (preprint, University of Sheffield, 1992).Google Scholar
[13]MacLane, S.. Categories for the Working Mathematician (Springer-Verlag, 1971).Google Scholar
[14]MacLane, S.. Homology (Springer-Verlag, third corrected printing, 1975).Google Scholar
[15]Malliavin, M.-P.. Algèbre homologique et opérateurs différentiels. In Ring theory (eds. J. Bueso, L., Jara, P. and Torrecillas, B.), pp. 173186. (Springer-Verlag Lecture Notes in Mathematics 1328, 1988.)CrossRefGoogle Scholar
[16]Mikami, K. and Weinstein, A.. Moments and reduction for symplectic groupoids. Publ. Res. inst.Math. Sci. 24 (1988), 121140.CrossRefGoogle Scholar
[17]Rinehart, G. S.. Differential forms on general commutative algebras. Trans. Amer. Math. Soc. 108 (1963), 195222.CrossRefGoogle Scholar
[18]Weinstein, A.. The local structure of Poisson manifolds. J. Differential Geom. 18 (1983), 523557. Errata and Addenda, same journal 22 (1985), 255.Google Scholar
[19]Weinstein, A.. Symplectic groupoids and Poisson manifolds. Bull. Amer. Math. Soc. (N.S.) 16 (1987), 101104.CrossRefGoogle Scholar
[20]Weinstein, A.. Coisotropic calculus and Poisson groupoids. J. Math. Soc. Japan 40 (1988), 705727.Google Scholar