Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T04:54:02.249Z Has data issue: false hasContentIssue false

Double Fourier series and boundary value problems

Published online by Cambridge University Press:  24 October 2008

A. E. Green
Affiliation:
The UniversityDurham

Extract

1. Problems in elasticity which are concerned with isotropic rectangular plates have attracted the attention of many writers both from the theoretical and practical points of view. When the boundary conditions are of the simply supported type the solution of the problems is usually simple, although when double Fourier series are used the validity of such solutions is not very clearly shown in most cases. Satisfactory exact solutions for many classical problems in which the edges of the rectangular plate are clamped have only been obtained in recent years, but approximate strain energy methods often gave results which were useful for practical purposes.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1944

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Faxén, O. H.Z. angew. Math. Mech. 15 (1935), 268.CrossRefGoogle Scholar
(2)Goldstein, S.Proc. Cambridge Phil. Soc. 32 (1936), 40.CrossRefGoogle Scholar
(3)Goldstein, S.Proc. Cambridge Phil. Soc. 33 (1937), 41.CrossRefGoogle Scholar
(4)Hencky, H. Der Spannungszustand in rechteckigen Platten (Diss.) (München, 1913).CrossRefGoogle Scholar
(5)Kato, H.J. Japanese Soc. Nav. Arch. 50 (1932), 209.Google Scholar
(6)Leggett, D. M. A.Proc. Cambridge Phil. Soc. 31 (1935), 368.CrossRefGoogle Scholar
(7)Leggett, D. M. A.Proc. Roy. Soc. A, 162 (1937), 62.Google Scholar
(8)Levy, S.J. Appl. Mech. 9A (1942), 171.CrossRefGoogle Scholar
(9)Love, A. E. H.Proc. London Math. Soc. 29 (1929), 189.CrossRefGoogle Scholar
(10)Maulbetsch, J. L.J. Appl. Mech. 4A (1937), 59.CrossRefGoogle Scholar
(11)Ritz, W.J. reine angew. Math. 135 (1909), 1.CrossRefGoogle Scholar
(12)Sezawa, K.Rep. Aero. Res. Inst. Tokyo Imp. Univ. no. 69 (1931).Google Scholar
(13)Sezawa, K.Rep. Aero. Res. Inst. Tokyo Imp. Univ. no. 70 (1931).Google Scholar
(14)Sezawa, K. and Watanabe, W.Rep. Aero. Res. Inst. Tokyo Imp. Univ. no. 143 (1936).Google Scholar
(15)Taylor, G. I.Z. angew. Math. Mech. 13 (1933), 147.CrossRefGoogle Scholar
(16)Tomotika, S.Rep. Aero. Res. Inst. Tokyo Imp. Univ. no. 129 (1935).Google Scholar
(17)Trefftz, E.Z. angew. Math. Mech. 15 (1935), 339.CrossRefGoogle Scholar
(18)Weinstein, A.J. London Math. Soc. 10 (1935), 184.CrossRefGoogle Scholar
(19)Weinstein, A.Proc. Cambridge Phil. Soc. 32 (1936), 96.CrossRefGoogle Scholar
(20)Timoshenko, S.Theory of Plates and Shells. (1940).Google Scholar